Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially Private Sliced Inverse Regression: Minimax Optimality and Algorithm (2401.08150v1)

Published 16 Jan 2024 in stat.ML, cs.CR, cs.LG, math.ST, and stat.TH

Abstract: Privacy preservation has become a critical concern in high-dimensional data analysis due to the growing prevalence of data-driven applications. Proposed by Li (1991), sliced inverse regression has emerged as a widely utilized statistical technique for reducing covariate dimensionality while maintaining sufficient statistical information. In this paper, we propose optimally differentially private algorithms specifically designed to address privacy concerns in the context of sufficient dimension reduction. We proceed to establish lower bounds for differentially private sliced inverse regression in both the low and high-dimensional settings. Moreover, we develop differentially private algorithms that achieve the minimax lower bounds up to logarithmic factors. Through a combination of simulations and real data analysis, we illustrate the efficacy of these differentially private algorithms in safeguarding privacy while preserving vital information within the reduced dimension space. As a natural extension, we can readily offer analogous lower and upper bounds for differentially private sparse principal component analysis, a topic that may also be of potential interest to the statistical and machine learning community.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com