Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Activations and Gradients Compression for Model-Parallel Training (2401.07788v2)

Published 15 Jan 2024 in cs.LG, cs.DC, and math.OC

Abstract: Large neural networks require enormous computational clusters of machines. Model-parallel training, when the model architecture is partitioned sequentially between workers, is a popular approach for training modern models. Information compression can be applied to decrease workers communication time, as it is often a bottleneck in such systems. This work explores how simultaneous compression of activations and gradients in model-parallel distributed training setup affects convergence. We analyze compression methods such as quantization and TopK compression, and also experiment with error compensation techniques. Moreover, we employ TopK with AQ-SGD per-batch error feedback approach. We conduct experiments on image classification and LLM fine-tuning tasks. Our findings demonstrate that gradients require milder compression rates than activations. We observe that $K=10\%$ is the lowest TopK compression level, which does not harm model convergence severely. Experiments also show that models trained with TopK perform well only when compression is also applied during inference. We find that error feedback techniques do not improve model-parallel training compared to plain compression, but allow model inference without compression with almost no quality drop. Finally, when applied with the AQ-SGD approach, TopK stronger than with $ K=30\%$ worsens model performance significantly.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mikhail Rudakov (1 paper)
  2. Aleksandr Beznosikov (68 papers)
  3. Yaroslav Kholodov (6 papers)
  4. Alexander Gasnikov (251 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com