Generating Bell states and Werner states of two qubits via optical field (2401.07574v1)
Abstract: In this paper, we investigate how the evolution of the states of two qubits initially in a direct product state can be controlled by the optical field in a Tavis-Cummings (TC) model. For the two qubits initially in the direct product state, we find that their matrix elements at any moment can be modulated by the coefficients of the optical field initial states in the number state space. We propose a method for preparing an \textit{X}-type state of two qubits. Subsequently, for descriptive convenience, we divide the Bell states of the two qubits into two kinds in the paper. When both qubits are initially in the ground state, we find that the two qubits can be controlled to produce the first type of Bell state by the superposition state optical field that is initially in the next-nearest-neighbor number state and that the production of any of the first type of Bell states can be controlled by controlling the phase between the two next-nearest-neighbor number states. When one of the two qubits is in the ground state, and the other is in the excited state, we can control the two qubits to produce the second type of Bell state by the single-photon number state optical field. Finally, we study the generation of Werner states by controlling two qubits initially, both in the ground state, using an optical field.
- A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777 (1935).
- N. Bohr, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 48, 696 (1935).
- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
- G. P. Berman, Introduction to quantum computers (World Scientific, 1998).
- J. Preskill, Reliable quantum computers, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 385 (1998).
- Y. Zhou, E. M. Stoudenmire, and X. Waintal, What limits the simulation of quantum computers?, Phys. Rev. X 10, 041038 (2020).
- A. Steane, Quantum computing, Reports on Progress in Physics 61, 117 (1998).
- N. Gisin and R. Thew, Quantum communication, Nature photonics 1, 165 (2007).
- H.-Y. Dai, M. Zhang, and L.-M. Kuang, Teleportation of the three-level three-particle entangled state and classical communication cost, Physica A: Statistical Mechanics and its Applications 387, 3811 (2008).
- C. H. Bennett, G. Brassard, and A. K. Ekert, Quantum cryptography, Scientific American 267, 50 (1992a).
- C. Portmann and R. Renner, Security in quantum cryptography, Rev. Mod. Phys. 94, 025008 (2022).
- D. J. Bernstein, Introduction to post-quantum cryptography, in Post-quantum cryptography (Springer, 2009) pp. 1–14.
- C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68, 3121 (1992).
- D. J. Bernstein and T. Lange, Post-quantum cryptography, Nature 549, 188 (2017).
- P. D. G. G. L. G. L. M. Richard J. Hughes, D. M. Alde and M. Schauer, Quantum cryptography, Contemporary Physics 36, 149 (1995).
- N. Lütkenhaus, Estimates for practical quantum cryptography, Phys. Rev. A 59, 3301 (1999).
- L. Goldenberg and L. Vaidman, Quantum cryptography based on orthogonal states, Phys. Rev. Lett. 75, 1239 (1995).
- H. Bechmann-Pasquinucci and W. Tittel, Quantum cryptography using larger alphabets, Phys. Rev. A 61, 062308 (2000).
- D. Sych and G. Leuchs, A complete basis of generalized bell states, New Journal of Physics 11, 013006 (2009).
- N. Gisin and H. Bechmann-Pasquinucci, Bell inequality, bell states and maximally entangled states for n qubits, Physics Letters A 246, 1 (1998).
- M. Kumar, Quantum: Einstein, Bohr and the great debate about the nature of reality (Icon Books Ltd, 2008).
- M. Sisodia, A. Shukla, and A. Pathak, Experimental realization of nondestructive discrimination of bell states using a five-qubit quantum computer, Physics Letters A 381, 3860 (2017).
- H.-A. Engel and D. Loss, Fermionic bell-state analyzer for spin qubits, Science 309, 586 (2005).
- A. Whitaker, The new quantum age: from Bell’s theorem to quantum computation and teleportation (Oxford University Press, 2012).
- J. L. O’brien, Optical quantum computing, Science 318, 1567 (2007).
- Y.-B. Sheng, F.-G. Deng, and G. L. Long, Complete hyperentangled-bell-state analysis for quantum communication, Phys. Rev. A 82, 032318 (2010).
- K. Shimizu and N. Imoto, Communication channels secured from eavesdropping via transmission of photonic bell states, Phys. Rev. A 60, 157 (1999).
- A. Zeilinger, Quantum teleportation, Scientific American 282, 50 (2000).
- E. O. Kiktenko, A. A. Popov, and A. K. Fedorov, Bidirectional imperfect quantum teleportation with a single bell state, Phys. Rev. A 93, 062305 (2016).
- J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, Beating the channel capacity limit for linear photonic superdense coding, Nature physics 4, 282 (2008).
- B. P. Williams, R. J. Sadlier, and T. S. Humble, Superdense coding over optical fiber links with complete bell-state measurements, Phys. Rev. Lett. 118, 050501 (2017).
- T.-C. Wei, J. T. Barreiro, and P. G. Kwiat, Hyperentangled bell-state analysis, Phys. Rev. A 75, 060305 (2007).
- R. F. Werner, Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model, Phys. Rev. A 40, 4277 (1989).
- T. Hiroshima and S. Ishizaka, Local and nonlocal properties of werner states, Phys. Rev. A 62, 044302 (2000).
- J. Lee and M. S. Kim, Entanglement teleportation via werner states, Phys. Rev. Lett. 84, 4236 (2000).
- D. A. Evans and H. M. Wiseman, Optimal measurements for tests of einstein-podolsky-rosen steering with no detection loophole using two-qubit werner states, Phys. Rev. A 90, 012114 (2014).
- V. Macrì, F. Nori, and A. F. Kockum, Simple preparation of bell and greenberger-horne-zeilinger states using ultrastrong-coupling circuit qed, Phys. Rev. A 98, 062327 (2018).
- S.-f. Qi and J. Jing, Generation of bell and greenberger-horne-zeilinger states from a hybrid qubit-photon-magnon system, Phys. Rev. A 105, 022624 (2022).
- S. A. Fldzhyan, M. Y. Saygin, and S. P. Kulik, Compact linear optical scheme for bell state generation, Phys. Rev. Res. 3, 043031 (2021).
- X. X. Yi, G. R. Jin, and D. L. Zhou, Creating bell states and decoherence effects in a quantum-dot system, Phys. Rev. A 63, 062307 (2001).
- A. C. Santos and R. Bachelard, Generation of maximally entangled long-lived states with giant atoms in a waveguide, Phys. Rev. Lett. 130, 053601 (2023).
- J. Zou, S. Zhang, and Y. Tserkovnyak, Bell-state generation for spin qubits via dissipative coupling, Phys. Rev. B 106, L180406 (2022).
- P. Zhao, Z. Jin, and D. Tong, Dissipative preparation of generalized bell states with the sørensen-mølmer setting, Phys. Rev. Appl. 18, 014051 (2022).
- S. Haroche and D. Kleppner, Cavity quantum electrodynamics, Physics Today 42, 24 (1989).
- H. Mabuchi and A. Doherty, Cavity quantum electrodynamics: coherence in context, Science 298, 1372 (2002).
- S. Haroche, Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary, Rev. Mod. Phys. 85, 1083 (2013).
- J. M. Raimond, M. Brune, and S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565 (2001).
- S.-B. Zheng and G.-C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity qed, Phys. Rev. Lett. 85, 2392 (2000).
- Z. Ficek and R. Tanaś, Entangled states and collective nonclassical effects in two-atom systems, Physics Reports 372, 369 (2002).
- T. W. Chen, C. K. Law, and P. T. Leung, Generation of entangled states of two atoms inside a leaky cavity, Phys. Rev. A 68, 052312 (2003).
- F. Casagrande and A. Lulli, Generation of maximally entangled atom pairs in driven dissipative cavity qed systems, The European Physical Journal D 46, 165 (2008).
- X.-L. Yin and J.-Q. Liao, Generation of two-giant-atom entanglement in waveguide-qed systems, Phys. Rev. A 108, 023728 (2023).
- R. Gómez-Rosas, C. A. González-Gutiérrez, and J. M. Torres, Entangling operations in nonlinear two-atom tavis-cummings models, Phys. Rev. A 104, 063701 (2021).
- W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80, 2245 (1998).