Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Must: Maximizing Latent Capacity of Spatial Transcriptomics Data (2401.07543v1)

Published 15 Jan 2024 in cs.CE and cs.AI

Abstract: Spatial transcriptomics (ST) technologies have revolutionized the study of gene expression patterns in tissues by providing multimodality data in transcriptomic, spatial, and morphological, offering opportunities for understanding tissue biology beyond transcriptomics. However, we identify the modality bias phenomenon in ST data species, i.e., the inconsistent contribution of different modalities to the labels leads to a tendency for the analysis methods to retain the information of the dominant modality. How to mitigate the adverse effects of modality bias to satisfy various downstream tasks remains a fundamental challenge. This paper introduces Multiple-modality Structure Transformation, named MuST, a novel methodology to tackle the challenge. MuST integrates the multi-modality information contained in the ST data effectively into a uniform latent space to provide a foundation for all the downstream tasks. It learns intrinsic local structures by topology discovery strategy and topology fusion loss function to solve the inconsistencies among different modalities. Thus, these topology-based and deep learning techniques provide a solid foundation for a variety of analytical tasks while coordinating different modalities. The effectiveness of MuST is assessed by performance metrics and biological significance. The results show that it outperforms existing state-of-the-art methods with clear advantages in the precision of identifying and preserving structures of tissues and biomarkers. MuST offers a versatile toolkit for the intricate analysis of complex biological systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. The technology and biology of single-cell rna sequencing. Molecular cell 58, 610–620 (2015). [2] Saliba, A.-E., Westermann, A. J., Gorski, S. A. & Vogel, J. Single-cell rna-seq: advances and future challenges. Nucleic acids research 42, 8845–8860 (2014). [3] Luecken, M. D. & Theis, F. J. Current best practices in single-cell rna-seq analysis: a tutorial. Molecular systems biology 15, e8746 (2019). [4] Erhard, F. et al. Time-resolved single-cell rna-seq using metabolic rna labelling. Nature Reviews Methods Primers 2, 77 (2022). [5] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saliba, A.-E., Westermann, A. J., Gorski, S. A. & Vogel, J. Single-cell rna-seq: advances and future challenges. Nucleic acids research 42, 8845–8860 (2014). [3] Luecken, M. D. & Theis, F. J. Current best practices in single-cell rna-seq analysis: a tutorial. Molecular systems biology 15, e8746 (2019). [4] Erhard, F. et al. Time-resolved single-cell rna-seq using metabolic rna labelling. Nature Reviews Methods Primers 2, 77 (2022). [5] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Luecken, M. D. & Theis, F. J. Current best practices in single-cell rna-seq analysis: a tutorial. Molecular systems biology 15, e8746 (2019). [4] Erhard, F. et al. Time-resolved single-cell rna-seq using metabolic rna labelling. Nature Reviews Methods Primers 2, 77 (2022). [5] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Erhard, F. et al. Time-resolved single-cell rna-seq using metabolic rna labelling. Nature Reviews Methods Primers 2, 77 (2022). [5] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  2. Single-cell rna-seq: advances and future challenges. Nucleic acids research 42, 8845–8860 (2014). [3] Luecken, M. D. & Theis, F. J. Current best practices in single-cell rna-seq analysis: a tutorial. Molecular systems biology 15, e8746 (2019). [4] Erhard, F. et al. Time-resolved single-cell rna-seq using metabolic rna labelling. Nature Reviews Methods Primers 2, 77 (2022). [5] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Luecken, M. D. & Theis, F. J. Current best practices in single-cell rna-seq analysis: a tutorial. Molecular systems biology 15, e8746 (2019). [4] Erhard, F. et al. Time-resolved single-cell rna-seq using metabolic rna labelling. Nature Reviews Methods Primers 2, 77 (2022). [5] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Erhard, F. et al. Time-resolved single-cell rna-seq using metabolic rna labelling. Nature Reviews Methods Primers 2, 77 (2022). [5] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  3. Current best practices in single-cell rna-seq analysis: a tutorial. Molecular systems biology 15, e8746 (2019). [4] Erhard, F. et al. Time-resolved single-cell rna-seq using metabolic rna labelling. Nature Reviews Methods Primers 2, 77 (2022). [5] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Erhard, F. et al. Time-resolved single-cell rna-seq using metabolic rna labelling. Nature Reviews Methods Primers 2, 77 (2022). [5] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  4. Erhard, F. et al. Time-resolved single-cell rna-seq using metabolic rna labelling. Nature Reviews Methods Primers 2, 77 (2022). [5] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  5. Spatial reconstruction of single-cell gene expression data. Nature biotechnology 33, 495–502 (2015). [6] Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  6. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 14, 1–18 (2022). [7] Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hudson, W. H. & Sudmeier, L. J. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  7. Localization of t cell clonotypes using the visium spatial transcriptomics platform. STAR protocols 3, 101391 (2022). [8] Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  8. Rodriques, S. G. et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019). [9] Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  9. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nature biotechnology 39, 313–319 (2021). [10] Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  10. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. Cell 185, 1777–1792 (2022). [11] Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  11. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016). [12] Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  12. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics 22, 627–644 (2021). [13] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  13. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021). [14] Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  14. The expanding vistas of spatial transcriptomics. Nature Biotechnology 41, 773–782 (2023). [15] Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  15. Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nature Communications 14, 1155 (2023). [16] Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  16. Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with muse. Nature biotechnology 40, 1200–1209 (2022). [17] Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  17. Dries, R. et al. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. BioRxiv 701680 (2019). [18] Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  18. Xu, Y. et al. Structure-preserving visualization for single-cell rna-seq profiles using deep manifold transformation with batch-correction. Communications Biology 6, 369 (2023). [19] Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  19. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nature biotechnology 40, 661–671 (2022). [20] Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  20. Spatially informed cell-type deconvolution for spatial transcriptomics. Nature biotechnology 40, 1349–1359 (2022). [21] Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dumitrascu, B., Villar, S., Mixon, D. G. & Engelhardt, B. E. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  21. Optimal marker gene selection for cell type discrimination in single cell analyses. Nature communications 12, 1186 (2021). [22] Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  22. Wolf, F. A. et al. Paga: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome biology 20, 1–9 (2019). [23] Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gat, I., Schwartz, I., Schwing, A. & Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  23. Removing bias in multi-modal classifiers: Regularization by maximizing functional entropies. Advances in Neural Information Processing Systems 33, 3197–3208 (2020). [24] Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  24. Guo, Y. et al. On modality bias recognition and reduction. ACM Transactions on Multimedia Computing, Communications and Applications 19, 1–22 (2023). [25] Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  25. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature communications 13, 1739 (2022). [26] Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Ren, H., Walker, B. L., Cang, Z. & Nie, Q. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  26. Identifying multicellular spatiotemporal organization of cells with spaceflow. Nature communications 13, 4076 (2022). [27] Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  27. Zong, Y. et al. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv 2022–01 (2022). [28] Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  28. Zeng, Y. et al. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics 24, bbad048 (2023). [29] Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Li, J., Chen, S., Pan, X., Yuan, Y. & Shen, H.-B. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  29. Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science 2, 399–408 (2022). [30] Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Teng, H., Yuan, Y. & Bar-Joseph, Z. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  30. Clustering spatial transcriptomics data. Bioinformatics 38, 997–1004 (2022). [31] Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  31. Hu, J. et al. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature methods 18, 1342–1351 (2021). [32] Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  32. Pham, D. et al. stlearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. BioRxiv 2020–05 (2020). [33] Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, X., Wang, X., Shivashankar, G. & Uhler, C. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  33. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for alzheimer’s disease. Nature Communications 13, 7480 (2022). [34] Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  34. Xu, C. et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research 50, e131–e131 (2022). [35] Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  35. Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nature biotechnology 40, 476–479 (2022). [36] Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  36. Zang, Z. et al. Deep manifold embedding of attributed graphs. Neurocomputing 514, 83–93 (2022). [37] Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  37. Zang, Z. et al. Dlme: Deep local-flatness manifold embedding. European Conference on Computer Vision 576–592 (2022). [38] Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  38. Semi-supervised classification with graph convolutional networks (2017). 1609.02907. [39] Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  39. Mamoor, S. The alpha subunit of the gamma-aminobutyric acid receptor, gabra1, is differentially expressed in the brains of patients with schizophrenia. OSF Preprints https://doi.org/10.31219/osf.io/m93ya (2020). [40] Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  40. Zhang, Y. et al. Association between nrgn gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC psychiatry 19, 1–9 (2019). [41] Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  41. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature neuroscience 24, 425–436 (2021). [42] Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  42. Winter, E. The shapley value. Handbook of game theory with economic applications 3, 2025–2054 (2002). [43] Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  43. Roth, A. E. The Shapley value: essays in honor of Lloyd S. Shapley (Cambridge University Press, 1988). [44] Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  44. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R journal 8, 289 (2016). [45] Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  45. Zang, Z. et al. Evnet: An explainable deep network for dimension reduction. IEEE Transactions on Visualization and Computer Graphics (2022). [46] Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  46. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using umap. Nature biotechnology 37, 38–44 (2019). [47] Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  47. Saltelli, A. Sensitivity analysis for importance assessment. Risk analysis 22, 579–590 (2002). [48] Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  48. Zou, H. The adaptive lasso and its oracle properties. Journal of the American statistical association 101, 1418–1429 (2006). [49] 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  49. 10xgenomics. 10x genomics. https://www.10xgenomics.com/resources/datasets/ (2023). [50] Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  50. Sunkin, S. M. et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids research 41, D996–D1008 (2012). [51] Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  51. Fu, H. et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Biorxiv 2021–06 (2021). [52] Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Zacharias, D. A. & Kappen, C. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  52. Developmental expression of the four plasma membrane calcium atpase (pmca) genes in the mouse. Biochimica et Biophysica Acta (BBA)-General Subjects 1428, 397–405 (1999). [53] Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  53. Cortical development: layers of complexity. Current Biology 7, R231–R234 (1997). [54] Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  54. Scanpy: large-scale single-cell gene expression data analysis. Genome biology 19, 1–5 (2018). [55] Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Svensson, V., Teichmann, S. A. & Stegle, O. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  55. Spatialde: identification of spatially variable genes. Nature methods 15, 343–346 (2018). [56] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  56. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016). [57] Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Hggstrm, O. & Mossel, E. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  57. Nearest-neighbor walks with low predictability profile and percolation in backslash epsilon dimensions. The Annals of Probability 26, 1212–1231 (1998). [58] Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Tang, J., Deng, C. & Huang, G.-B. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  58. Extreme learning machine for multilayer perceptron. IEEE transactions on neural networks and learning systems 27, 809–821 (2015). [59] Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  59. Peterson, L. E. K-nearest neighbor. Scholarpedia 4, 1883 (2009). [60] Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  60. Visualizing data using t-sne. Journal of machine learning research 9 (2008). [61] Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011). Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
  61. Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 2825–2830 (2011).
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Zelin Zang (31 papers)
  2. Liangyu Li (5 papers)
  3. Yongjie Xu (13 papers)
  4. Chenrui Duan (5 papers)
  5. Kai Wang (625 papers)
  6. Yang You (173 papers)
  7. Yi Sun (146 papers)
  8. Stan Z. Li (223 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.