Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DynaHull: Density-centric Dynamic Point Filtering in Point Clouds (2401.07541v2)

Published 15 Jan 2024 in cs.RO

Abstract: In the field of indoor robotics, accurately localizing and mapping in dynamic environments using point clouds can be a challenging task due to the presence of dynamic points. These dynamic points are often represented by people in indoor environments, but in industrial settings with moving machinery, there can be various types of dynamic points. This study introduces DynaHull, a novel technique designed to enhance indoor mapping accuracy by effectively removing dynamic points from point clouds. DynaHull works by leveraging the observation that, over multiple scans, stationary points have a higher density compared to dynamic ones. Furthermore, DynaHull addresses mapping challenges related to unevenly distributed points by clustering the map into smaller sections. In each section, the density factor of each point is determined by dividing the number of neighbors by the volume these neighboring points occupy using a convex hull method. The algorithm removes the dynamic points using an adaptive threshold based on the point count of each cluster, thus reducing the false positives. The performance of DynaHull was compared to state-of-the-art techniques, such as ERASOR, Removert, OctoMap plus SOR, and Dynablox, by comparing each method to the ground truth map created during a low activity period in which only a few dynamic points were present. The results indicated that DynaHull outperformed these techniques in various metrics, noticeably in the Earth Mover's Distance, false negatives, and false positives.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. A. Loganathan and N. S. Ahmad, “A systematic review on recent advances in autonomous mobile robot navigation,” Engineering Science and Technology, an International Journal, vol. 40, p. 101343, 2023.
  2. T. Kim Geok, K. Zar Aung, M. Sandar Aung, M. Thu Soe, A. Abdaziz, C. Pao Liew, F. Hossain, C. P. Tso, and W. H. Yong, “Review of indoor positioning: Radio wave technology,” Applied Sciences, vol. 11, no. 1, 2021.
  3. A. Macario Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel, “A comprehensive survey of visual slam algorithms,” Robotics, vol. 11, no. 1, 2022.
  4. R. Yagfarov, M. Ivanou, and I. Afanasyev, “Map comparison of lidar-based 2d slam algorithms using precise ground truth,” 11 2018.
  5. L. Huang, “Review on lidar-based slam techniques,” pp. 163–168, 11 2021.
  6. J. Leonard and H. Durrant-Whyte, “Simultaneous map building and localization for an autonomous mobile robot,” in Proceedings IROS ’91:IEEE/RSJ International Workshop on Intelligent Robots and Systems ’91, pp. 1442–1447 vol.3, 1991.
  7. S. Zhao, Z. Fang, H. Li, and S. Scherer, “A robust laser-inertial odometry and mapping method for large-scale highway environments,” pp. 1285–1292, 11 2019.
  8. W. Xiao, B. Vallet, and N. Paparoditis, “Change detection in 3d point clouds acquired by a mobile mapping system,” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-5/W2, pp. 331–336, 10 2013.
  9. G. Postica, A. Romanoni, and M. Matteucci, “Robust moving objects detection in lidar data exploiting visual cues,” 10 2016.
  10. J. Schauer and A. Nüchter, “The peopleremover—removing dynamic objects from 3-d point cloud data by traversing a voxel occupancy grid,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1679–1686, 2018.
  11. A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap: An efficient probabilistic 3d mapping framework based on octrees,” Autonomous Robots, vol. 34, 04 2013.
  12. Q. Zhang, D. Duberg, R. Geng, M. Jia, L. Wang, and P. Jensfelt, “A dynamic points removal benchmark in point cloud maps,” arXiv preprint arXiv:2307.07260, 2023.
  13. F. Pomerleau, P. Krüsi, F. Colas, P. Furgale, and R. Siegwart, “Long-term 3d map maintenance in dynamic environments,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3712–3719, 2014.
  14. R. Ambruş, N. Bore, J. Folkesson, and P. Jensfelt, “Meta-rooms: Building and maintaining long term spatial models in a dynamic world,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1854–1861, 2014.
  15. G. Kim and A. Kim, “Remove, then revert: Static point cloud map construction using multiresolution range images,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10758–10765, 2020.
  16. H. Lim, S. Hwang, and H. Myung, “Erasor: Egocentric ratio of pseudo occupancy-based dynamic object removal for static 3d point cloud map building,” IEEE Robotics and Automation Letters, vol. 6, pp. 2272–2279, 2021.
  17. A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “Rangenet ++: Fast and accurate lidar semantic segmentation,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220, 2019.
  18. Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d object detection,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (Los Alamitos, CA, USA), pp. 4490–4499, IEEE Computer Society, jun 2018.
  19. X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley, and C. Stachniss, “Moving object segmentation in 3d lidar data: A learning-based approach exploiting sequential data,” IEEE Robotics and Automation Letters, vol. PP, pp. 1–1, 06 2021.
  20. X. Wang, Y. Mizukami, M. Tada, and F. Matsuno, “Navigation of a mobile robot in a dynamic environment using a point cloud map,” Artificial Life and Robotics, vol. 26, 07 2020.
  21. A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard, “Motion-based detection and tracking in 3d lidar scans,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4508–4513, 2016.
  22. S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and detection from point cloud,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–779, 2019.
  23. K. Wong, S. Wang, M. Ren, M. Liang, and R. Urtasun, “Identifying unknown instances for autonomous driving,” ArXiv, vol. abs/1910.11296, 2019.
  24. K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional lidar-based system for long-term and wide-area people behavior measurement,” International Journal of Advanced Robotic Systems, vol. 16, 02 2019.
  25. M. Himmelsbach, F. v. Hundelshausen, and H.-J. Wuensche, “Fast segmentation of 3d point clouds for ground vehicles,” in 2010 IEEE Intelligent Vehicles Symposium, pp. 560–565, 2010.
  26. L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine learning software: experiences from the scikit-learn project,” in ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122, 2013.
  27. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.
  28. Q.-Y. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for 3d data processing,” 2018. cite arxiv:1801.09847Comment: http://www.open3d.org.
  29. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, pp. 357–362, Sept. 2020.
  30. H. Fan, H. Su, and L. Guibas, “A point set generation network for 3d object reconstruction from a single image,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Los Alamitos, CA, USA), pp. 2463–2471, IEEE Computer Society, jul 2017.
  31. R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko, A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and T. Vayer, “Pot: Python optimal transport,” Journal of Machine Learning Research, vol. 22, no. 78, pp. 1–8, 2021.

Summary

We haven't generated a summary for this paper yet.