Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Principle of Minimum Pressure Gradient: An Alternative Basis for Physics-Informed Learning of Incompressible Fluid Mechanics

Published 15 Jan 2024 in physics.flu-dyn and cs.AI | (2401.07489v1)

Abstract: Recent advances in the application of physics-informed learning into the field of fluid mechanics have been predominantly grounded in the Newtonian framework, primarly leveraging Navier-Stokes Equation or one of its various derivative to train a neural network. Here, we propose an alternative approach based on variational methods. The proposed approach uses the principle of minimum pressure gradient combined with the continuity constraint to train a neural network and predict the flow field in incompressible fluids. We describe the underlying principles of the proposed approach, then use a demonstrative example to illustrate its implementation and show that it reduces the computational time per training epoch when compared to the conventional approach.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.