Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective cone of a Grassmann bundle over a curve defined over $\overline{\mathbb F}_p$ (2401.07478v1)

Published 15 Jan 2024 in math.AG

Abstract: Let $X$ be an irreducible smooth projective curve defined over $\overline{\mathbb F}p$ and $E$ a vector bundle on $X$ of rank at least two. For any $1\, \leq\, r\, <\, {\rm rank}(E)$, let ${\rm Gr}_r(E)$ be the Grassmann bundle over $X$ parametrizing all the $r$ dimensional quotients of the fibers of $E$. We prove that the effective cone in ${\rm NS}({\rm Gr}_r(E))\otimes{\mathbb Z} {\mathbb R}$ coincides with the pseudo-effective cone in ${\rm NS}({\rm Gr}r(E))\otimes{\mathbb Z} {\mathbb R}$. When $r\,=\,1$ or ${\rm rank}(E)-1$, this was proved by A. Moriwaki.

Summary

We haven't generated a summary for this paper yet.