Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CarSpeedNet: A Deep Neural Network-based Car Speed Estimation from Smartphone Accelerometer (2401.07468v2)

Published 15 Jan 2024 in cs.LG and cs.AI

Abstract: We introduce the CarSpeedNet, a deep learning model designed to estimate car speed using three-axis accelerometer data from smartphones. Using 13 hours of data collected from a smartphone in cars across various roads, CarSpeedNet accurately models the relationship between smartphone acceleration and car speed. Ground truth speed data was collected at 1 [Hz] from GPS receivers. The model provides high-frequency speed estimation by incorporating historical data and achieves a precision of less than 0.72 [m/s] during extended driving tests, relying solely on smartphone accelerometer data without any connection to the car.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Z. Armah, I. Wiafe, F. Koranteng, and E. Owusu, “Speed monitoring and controlling systems for road vehicle safety: a systematic review.” Advances in Transportation Studies, vol. 56, 2022.
  2. M. Freydin and B. Or, “Learning car speed using inertial sensors for dead reckoning navigation,” IEEE Sensors Letters, vol. 6, no. 9, pp. 1–4, 2022.
  3. H. Dong, M. Wen, and Z. Yang, “Vehicle speed estimation based on 3d convnets and non-local blocks,” Future Internet, vol. 11, no. 6, p. 123, 2019.
  4. B. Or and I. Klein, “Learning vehicle trajectory uncertainty,” Engineering Applications of Artificial Intelligence, vol. 122, p. 106101, 2023.
  5. W. Kerber, “Data governance in connected cars: the problem of access to in-vehicle data,” J. Intell. Prop. Info. Tech. & Elec. Com. L., vol. 9, p. 310, 2018.
  6. C. Campolo, A. Iera, A. Molinaro, S. Y. Paratore, and G. Ruggeri, “Smartcar: An integrated smartphone-based platform to support traffic management applications,” in 2012 first international workshop on vehicular traffic management for smart cities (VTM).   IEEE, 2012, pp. 1–6.
  7. V. Astarita, D. C. Festa, and V. P. Giofrè, “Mobile systems applied to traffic management and safety: a state of the art,” Procedia computer science, vol. 134, pp. 407–414, 2018.
  8. A. Ali, N. Ayub, M. Shiraz, N. Ullah, A. Gani, and M. A. Qureshi, “Traffic efficiency models for urban traffic management using mobile crowd sensing: A survey,” Sustainability, vol. 13, no. 23, p. 13068, 2021.
  9. Y. Yao, X. Zhao, C. Liu, J. Rong, Y. Zhang, Z. Dong, and Y. Su, “Vehicle fuel consumption prediction method based on driving behavior data collected from smartphones,” Journal of Advanced Transportation, vol. 2020, pp. 1–11, 2020.
  10. E. Mantouka, E. Barmpounakis, E. Vlahogianni, and J. Golias, “Smartphone sensing for understanding driving behavior: Current practice and challenges,” International journal of transportation science and technology, vol. 10, no. 3, pp. 266–282, 2021.
  11. Y. Li, R. Chen, X. Niu, Y. Zhuang, Z. Gao, X. Hu, and N. El-Sheimy, “Inertial sensing meets machine learning: Opportunity or challenge?” IEEE Transactions on Intelligent Transportation Systems, 2021.
  12. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.
  13. J. Zhang, W. Xiao, B. Coifman, and J. P. Mills, “Vehicle tracking and speed estimation from roadside lidar,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 5597–5608, 2020.
  14. D. Fernandez Llorca, A. Hernandez Martinez, and I. Garcia Daza, “Vision-based vehicle speed estimation: A survey,” IET Intelligent Transport Systems, vol. 15, no. 8, pp. 987–1005, 2021.
  15. J. Yu, M. E. Stettler, P. Angeloudis, S. Hu, and X. M. Chen, “Urban network-wide traffic speed estimation with massive ride-sourcing gps traces,” Transportation Research Part C: Emerging Technologies, vol. 112, pp. 136–152, 2020.
  16. Q. Wang, Y. Gu, J. Liu, and S. Kamijo, “Deepspeedometer: Vehicle speed estimation from accelerometer and gyroscope using lstm model,” in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2017, pp. 1–6.
  17. I. Ustun and M. Cetin, “Speed estimation using smartphone accelerometer data,” Transportation research record, vol. 2673, no. 3, pp. 65–73, 2019.
  18. N. E. A. Abdelgawad, A. El Mahdy, W. Gomaa, and A. Shoukry, “Estimating vehicle speed on highway roads from smartphone sensors using deep learning models,” in 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI).   IEEE, 2019, pp. 979–986.
  19. I. Sharp, K. Yu, and Y. J. Guo, “Gdop analysis for positioning system design,” IEEE Transactions on Vehicular Technology, vol. 58, no. 7, pp. 3371–3382, 2009.
  20. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  21. P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, and B. Xu, “Attention-based bidirectional long short-term memory networks for relation classification,” in Proceedings of the 54th annual meeting of the association for computational linguistics (volume 2: Short papers), 2016, pp. 207–212.
  22. A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.
  23. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  24. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
Citations (2)

Summary

We haven't generated a summary for this paper yet.