Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference of dynamical gene regulatory networks from single-cell data with physics informed neural networks (2401.07379v1)

Published 14 Jan 2024 in q-bio.QM, cs.AI, cs.LG, q-bio.MN, and physics.bio-ph

Abstract: One of the main goals of developmental biology is to reveal the gene regulatory networks (GRNs) underlying the robust differentiation of multipotent progenitors into precisely specified cell types. Most existing methods to infer GRNs from experimental data have limited predictive power as the inferred GRNs merely reflect gene expression similarity or correlation. Here, we demonstrate, how physics-informed neural networks (PINNs) can be used to infer the parameters of predictive, dynamical GRNs that provide mechanistic understanding of biological processes. Specifically we study GRNs that exhibit bifurcation behavior and can therefore model cell differentiation. We show that PINNs outperform regular feed-forward neural networks on the parameter inference task and analyze two relevant experimental scenarios: 1. a system with cell communication for which gene expression trajectories are available and 2. snapshot measurements of a cell population in which cell communication is absent. Our analysis will inform the design of future experiments to be analyzed with PINNs and provides a starting point to explore this powerful class of neural network models further.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data. Genome Biology. 2022;23(1):1–21. doi:10.1186/S13059-022-02622-0/TABLES/1.
  2. A comparison of single-cell trajectory inference methods. Nature Biotechnology. 2019;37(5):547–554. doi:10.1038/s41587-019-0071-9.
  3. Mircea M, Semrau S. How a cell decides its own fate: a single-cell view of molecular mechanisms and dynamics of cell-type specification. Biochemical Society Transactions. 2021;doi:10.1042/BST20210135.
  4. Guillemin A, Stumpf MPH. Non-equilibrium statistical physics, transitory epigenetic landscapes, and cell fate decision dynamics. Mathematical Biosciences and Engineering. 2020;17(6):7916–7930.
  5. The physics of cell fate. In: Phenotypic Switching. Elsevier; 2020. p. 189–206. Available from: https://www.sciencedirect.com/science/article/pii/B9780128179963000037.
  6. Xu L, Wang J. Quantifying Waddington landscapes, paths, and kinetics of cell fate decision making of differentiation/development. In: Phenotypic Switching. Elsevier; 2020. p. 157–187. Available from: https://www.sciencedirect.com/science/article/pii/B9780128179963000025.
  7. Huang S. The molecular and mathematical basis of Waddington’s epigenetic landscape: A framework for post-Darwinian biology? BioEssays. 2012;34(2):149–157. doi:10.1002/BIES.201100031.
  8. Quasi-potential landscape in complex multi-stable systems. Journal of The Royal Society Interface. 2012;9(77):3539–3553. doi:10.1098/RSIF.2012.0434.
  9. Waddington CH. The strategy of the genes : a discussion of some aspects of theoretical biology / by C.H. Waddington. — Wellcome Collection. London: Allen and Unwin; 1975. Available from: https://wellcomecollection.org/works/nzwm3z65/items?canvas=1.
  10. Ferrell JE. Bistability, Bifurcations, and Waddington’s Epigenetic Landscape. Current Biology. 2012;22(11):R458–R466. doi:10.1016/J.CUB.2012.03.045.
  11. Growth factor-mediated coupling between lineage size and cell fate choice underlies robustness of mammalian development. eLife. 2020;9:1–38. doi:10.7554/eLife.56079.
  12. Available from: https://doi.org/10.1101/2020.02.14.949701.
  13. Franke MK, Maclean AL. A single-cell resolved cell-cell communication model explains lineage commitment in hematopoiesis. bioRxiv. 2021; p. 2021.03.31.437948. doi:10.1101/2021.03.31.437948.
  14. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Developmental Biology. 2007;305(2):695–713. doi:10.1016/J.YDBIO.2007.02.036.
  15. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nature Methods. 2020;17(2):147–154. doi:10.1038/s41592-019-0690-6.
  16. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE. 2010;5(9):12776. doi:10.1371/journal.pone.0012776.
  17. SCENIC: Single-cell regulatory network inference and clustering. Nature Methods. 2017;14(11):1083–1086. doi:10.1038/nmeth.4463.
  18. SINCERITIES: Inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics. 2018;34(2):258–266. doi:10.1093/bioinformatics/btx575.
  19. Inferring Causal Gene Regulatory Networks from Coupled Single-Cell Expression Dynamics Using Scribe. Cell Systems. 2020;10(3):265–274.e11. doi:10.1016/j.cels.2020.02.003.
  20. Available from: https://github.com/morris-lab/CellOracle.
  21. Fundamental limits on dynamic inference from single-cell snapshots. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(10):E2467–E2476. doi:10.1073/pnas.1714723115.
  22. Defining an essential transcription factor program for naïve pluripotency. Science. 2014;344(6188):1156–1160. doi:10.1126/SCIENCE.1248882/SUPPL_FILE/DUNN.SM.PDF.
  23. Statistically derived geometrical landscapes capture principles of decision-making dynamics during cell fate transitions. Cell Systems. 2021;doi:10.1016/J.CELS.2021.08.013.
  24. Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access. 2019;7:158820–158846. doi:10.1109/ACCESS.2019.2945545.
  25. Deep learning for computational biology. Molecular Systems Biology. 2016;12(7):878. doi:10.15252/MSB.20156651.
  26. Single-cell RNA-seq denoising using a deep count autoencoder. Nature Communications. 2019;10(1). doi:10.1038/s41467-018-07931-2.
  27. Predicting gene regulatory interactions based on spatial gene expression data and deep learning. PLOS Computational Biology. 2019;15(9):e1007324. doi:10.1371/JOURNAL.PCBI.1007324.
  28. Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks. Computational and Structural Biotechnology Journal. 2020;18:3335–3343. doi:10.1016/J.CSBJ.2020.10.022.
  29. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics. 2019;378:686–707. doi:10.1016/j.jcp.2018.10.045.
  30. DeepXDE: A deep learning library for solving differential equations. SIAM Review. 2019;63(1):208–228. doi:10.1137/19M1274067.
  31. Physics-informed machine learning. Nature Reviews Physics 2021 3:6. 2021;3(6):422–440. doi:10.1038/s42254-021-00314-5.
  32. Biologically-informed neural networks guide mechanistic modeling from sparse experimental data. PLOS Computational Biology. 2020;16(12):e1008462. doi:10.1371/JOURNAL.PCBI.1008462.
  33. Systems biology informed deep learning for inferring parameters and hidden dynamics. PLOS Computational Biology. 2020;16(11):e1007575. doi:10.1371/journal.pcbi.1007575.
  34. AlQuraishi M, Sorger PK. Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms. Nature Methods 2021 18:10. 2021;18(10):1169–1180. doi:10.1038/s41592-021-01283-4.
  35. Robustness and timing of cellular differentiation through population-based symmetry breaking. Development. 2021;148(3):dev197608. doi:10.1242/dev.197608.
  36. Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development (Cambridge). 2014;141(19):3637–3648. doi:10.1242/dev.109678.
  37. Xia B, Yanai I. A periodic table of cell types. Development (Cambridge). 2019;146(12). doi:10.1242/dev.169854.
  38. Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell. 2020;26(6):862–879.e11. doi:10.1016/j.stem.2020.05.004.
  39. A gastruloid model of the interaction between embryonic and extra-embryonic cell types:. Journal of Tissue Engineering. 2022;13. doi:10.1177/20417314221103042.
  40. Stochastic gene expression in a single cell. Science. 2002;297(5584):1183–1186. doi:10.1126/science.1070919.
  41. Noise-driven cell differentiation and the emergence of spatiotemporal patterns. PLOS ONE. 2020;15(4):e0232060. doi:10.1371/JOURNAL.PONE.0232060.
  42. Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Proceedings of Machine Learning Research. 2010;.
  43. Growing Neural Cellular Automata. Distill. 2020;5(2):e23. doi:10.23915/DISTILL.00023.
  44. On stability analysis of genetic regulatory networks represented by delay-differential equations. IFAC-PapersOnLine. 2015;48(1):453–457. doi:10.1016/J.IFACOL.2015.05.108.
  45. Available from: http://dx.doi.org/10.1016/j.molcel.2015.04.005.
  46. Uy WIT, Grigoriu MD. Neural network representation of the probability density function of diffusion processes. Chaos. 2020;30(9). doi:10.48550/arxiv.2001.05437.
  47. Solving Fokker-Planck equation using deep learning. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2020;30(1):013133. doi:10.1063/1.5132840.
  48. Diffusion pseudotime robustly reconstructs lineage branching. Nature Methods 2016 13:10. 2016;13(10):845–848. doi:10.1038/nmeth.3971.
  49. Ji Z, Ji H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Research. 2016;44(13):e117. doi:10.1093/nar/gkw430.

Summary

We haven't generated a summary for this paper yet.