Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stabilization of molecular hydrogen-bonded chains by carbon nanotubes (2401.07366v1)

Published 14 Jan 2024 in cond-mat.mes-hall

Abstract: We study numerically nonlinear dynamics of several types of molecular systems composed of hydrogen-bonded chains placed inside carbon nanotubes with open edges. We demonstrate that carbon nanotubes provide a stabilization mechanism for quasi-one-dimensional molecular chains via the formation of their secondary structures. In particular, a polypeptide chain (Gly)$N$ placed inside a carbon nanotube can form of a stable helical chain ($3{10}$, $\alpha$, $\pi$ and $\beta$-helix) with parallel chains of hydrogen-bonded peptide groups. A chain of hydrogen fluoride molecules can form hydrogen-bonded zigzag chain. We reveal that in such geometries the hydrogen-bonded chains may remain stable even at $T=500$~K. Thus, our results suggest that the use of carbon nanotubes with encapsulated hydrogen fluoride molecules may support high proton conductivity operating at high temperatures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. S. C. Chowdhury, J. W. Gillespie Jr. A molecular dynamics study of the effects of hydrogen bonds on mechanical properties of Kevlar crystal. Computational Materials Science 148 286-300 (2018).
  2. K.-D. Kreuer. Proton Conductivity: Materials and Applications. Chem. Mater. 8(3), 610-641 (1996).
  3. M. Sprinborg. Energy surfaces and electronic properties of hydrogen fluoride. Phys Rev. B 38(2), 1483-1503 (1988).
  4. G. Zundel. Hydrogen Bonds with Large Proton Polarizability and Proton Transfer Processes in Electrochemistry and Biology. Adv. Chem. Phys. 111, 1 (2000)
  5. F. Fillaux. The impact of vibrational spectroscopy with neutrons on our view of quantum dynamics in hydrogen bonds and proton transfer. J. Mol. Struct. 615, 45-59 (2002).
  6. D. Marx. Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations. Chem. Phys. Chem. 7(9), 1848-1870 (2006).
  7. N. Bjerrum. Structure and Properties of Ice. Science. 115(2989), 385-390 (1952).
  8. L. Onsager. The Motion of Ions: Principles and Concepts. Science 166(3911), 1359 (1969).
  9. A. S. Davydov. Theory of the Absorption of Light in Molecular Crystals. Kiev: Ukrainian Acad. Scien. (1951).
  10. W. Moffitt. Optical Rotatory Dispersion of Helical Polymers. J. Chem. Phys. 25(6), 467-478 (1956).
  11. A. S. Davydov. Deformation of Molecular Crystals at Electronic Excitation. Phys. Stat. Sol. 36, 211-219 (1969).
  12. A. S. Davydov. Solitons in molecular systems. Phys. Scr. 20 387-394 (1979).
  13. A. S. Davydov. The role of solitons in the energy and electron transfer in one-dimensional molecular systems. Physica D 3, 1-22 (1981).
  14. A. C. Scott. Dynamics of Davydov solitons. Phys. Rev. A 26, 578-595 (1982).
  15. A. C. Scott. Davydov solitons in polypeptides. Phill. Trans. Roy. Soc. London A 315, 423-436 (1985).
  16. A. C. Scott. Davydov’s soliton. Phys Rep 217, 1-67 (1992).
  17. V. A. Kuprievich On autolocalization of the stationary states in a finite molecular chain. Physica D 14(3), 395-402 (1985).
  18. L. S. Brizhik. Soliton generation in molecular chains. Phys. Rev. B 48(5),3142-4 (1993).
  19. L. Cruzeiro. The VES Hypothesis and Protein Conformational Changes. Z. Phys. Chem. 230(5-7), 743-776 (2016).
  20. L. Cruzeiro. The VES KM: a pathway for protein folding in vivo. Pure Appl. Chem. 92(1), 179-191 (2020).
  21. L. Cruzeiro. Knowns and unknowns in the Davydov model for energy transfer in proteins. Fiz. Nizk. Temp. 48, 1105-1126 (December 2022).
  22. A. V. Savin and Y. S. Kivshar. Phononic Fano resonances in graphene nanoribbons with local defects. Sci. Rep. 7, 4668 (2017).
  23. A. V. Savin and Y. S. Kivshar. Discrete breathers in carbon nanotubes. Europhys. Lett. 82, 66002 (2008).
  24. A. V. Nemukhin. Zh. Fiz. Khim. 66, 4 (1992).

Summary

We haven't generated a summary for this paper yet.