Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Physics Model Bias Correction with Data-Driven Reduced Order Modelling Techniques: Application to Nuclear Case Studies (2401.07300v1)

Published 14 Jan 2024 in math.NA and cs.NA

Abstract: Nowadays, interest in combining mathematical knowledge about phenomena and data from the physical system is growing. Past research was devoted to developing so-called high-fidelity models, intending to make them able to catch most of the physical phenomena occurring in the system. Nevertheless, models will always be affected by uncertainties related, for example, to the parameters and inevitably limited by the underlying simplifying hypotheses on, for example, geometry and mathematical equations; thus, in a way, there exists an upper threshold of model performance. Now, research in many engineering sectors also focuses on the so-called data-driven modelling, which aims at extracting information from available data to combine it with the mathematical model. Focusing on the nuclear field, interest in this approach is also related to the Multi-Physics modelling of nuclear reactors. Due to the multiple physics involved and their mutual and complex interactions, developing accurate and stable models both from the physical and numerical point of view remains a challenging task despite the advancements in computational hardware and software, and combining the available mathematical model with data can further improve the performance and the accuracy of the former. This work investigates this aspect by applying two Data-Driven Reduced Order Modelling (DDROM) techniques, the Generalised Empirical Interpolation Method and the Parametrised-Background Data-Weak formulation, to literature benchmark nuclear case studies. The main goal of this work is to assess the possibility of using data to perform model bias correction, that is, verifying the reliability of DDROM approaches in improving the model performance and accuracy through the information provided by the data. The obtained numerical results are promising, foreseeing further investigation of the DDROM approach to nuclear industrial cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. doi:10.1515/9783110671490. URL https://doi.org/10.1515/9783110671490
  2. doi:10.1016/j.jcp.2018.02.050. URL https://www.sciencedirect.com/science/article/pii/S0021999118301414
  3. doi:10.1002/wcc.535.
  4. doi:10.1007/978-3-319-02090-7_9. URL https://doi.org/10.1007/978-3-319-02090-7_9
  5. doi:10.1016/j.cma.2016.08.006. URL http://dx.doi.org/10.1016/j.cma.2016.08.006
  6. doi:10.1016/j.apm.2017.01.066.
  7. doi:10.1515/caim-2017-0011.
  8. doi:10.3934/cpaa.2009.8.383.
  9. doi:10.1007/978-88-470-2592-9_13.
  10. doi:10.3934/mine.2022021. URL https://www.aimspress.com/article/doi/10.3934/mine.2022021
  11. doi:10.1080/00295639.2021.2014752. URL https://doi.org/10.1080/00295639.2021.2014752
  12. doi:10.1016/j.jcp.2018.02.037. URL https://www.sciencedirect.com/science/article/pii/S0021999118301190
  13. doi:10.1016/j.jcp.2019.01.031. URL https://www.sciencedirect.com/science/article/pii/S0021999119300828
  14. doi:10.1016/j.jcp.2021.110666. URL https://www.sciencedirect.com/science/article/pii/S0021999121005611
  15. doi:10.3390/ma11112222. URL https://www.mdpi.com/1996-1944/11/11/2222
  16. Use of Reduced-order Models for Improved Data Assimilation within an EnKF Context, Vol. All Days of SPE Reservoir Simulation Conference. arXiv:https://onepetro.org/spersc/proceedings-pdf/11RSS/All-11RSS/SPE-141967-MS/1695046/spe-141967-ms.pdf, doi:10.2118/141967-MS. URL https://doi.org/10.2118/141967-MS
  17. arXiv:https://doi.org/10.1137/17M1157635, doi:10.1137/17M1157635. URL https://doi.org/10.1137/17M1157635
  18. doi:10.1137/15M1025384. URL https://epubs.siam.org/doi/10.1137/15M1025384
  19. doi:10.1016/j.jcp.2023.112599. URL https://www.sciencedirect.com/science/article/pii/S0021999123006940
  20. doi:10.1016/j.cma.2015.01.018. URL http://dx.doi.org/10.1016/j.cma.2015.01.018
  21. doi:10.1137/140978843. URL http://dx.doi.org/10.1137/140978843
  22. doi:10.3389/fenrg.2021.804018. URL https://www.frontiersin.org/articles/10.3389/fenrg.2021.804018
  23. doi:10.1002/nme.4747.
  24. doi:10.1051/proc/201550008. URL https://doi.org/10.1051/proc/201550008
  25. doi:10.1137/18M116544X. URL https://doi.org/10.1137/18M116544X
  26. doi:10.13140/RG.2.2.16001.45928.
  27. doi:10.1051/proc/201550008.
  28. doi:10.1016/j.cma.2022.115868. URL https://www.sciencedirect.com/science/article/pii/S0045782522008246
  29. doi:https://doi.org/10.1016/j.anucene.2023.109863. URL https://www.sciencedirect.com/science/article/pii/S0306454923001822
  30. doi:https://doi.org/10.1016/B978-0-12-815069-6.00006-4. URL https://www.sciencedirect.com/science/article/pii/B9780128150696000064
  31. doi:10.13140/2.1.4455.1044.
  32. doi:10.1063/1.168744.
  33. doi:https://doi.org/10.1016/j.anucene.2014.08.024. URL https://www.sciencedirect.com/science/article/pii/S0306454914004095
  34. doi:10.1140/epjp/s13360-020-00427-3. URL https://doi.org/10.1140/epjp/s13360-020-00427-3
  35. doi:https://doi.org/10.1016/j.nucengdes.2015.05.035. URL https://www.sciencedirect.com/science/article/pii/S0029549315003829
  36. doi:10.1016/j.cma.2020.112947. URL https://linkinghub.elsevier.com/retrieve/pii/S0045782520301304
  37. doi:10.1016/j.cma.2022.115811. URL https://www.sciencedirect.com/science/article/pii/S0045782522007678
  38. doi:10.2172/12030251. URL https://www.osti.gov/biblio/12030251
  39. doi:10.13182/NSE38-8. URL https://doi.org/10.13182/NSE38-8
  40. doi:10.2172/4530879. URL https://www.osti.gov/biblio/4530879
  41. doi:https://doi.org/10.1016/j.anucene.2023.109864. URL https://www.sciencedirect.com/science/article/pii/S0306454923001834
  42. doi:https://doi.org/10.1016/j.cma.2022.115773. URL https://www.sciencedirect.com/science/article/pii/S0045782522007290
  43. doi:10.1137/1021044.
  44. doi:10.5281/zenodo.10447666.
  45. doi:10.1145/3524456.
  46. doi:10.21105/joss.03982.
  47. doi:10.1145/2566630.
  48. doi:10.1002/qj.49711247414. URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49711247414
  49. F. Rabier, Variational data assimilation theory and overview (2003 2003).
  50. doi:10.1007/s10444-019-09713-w. URL https://doi.org/10.1007/s10444-019-09713-w
  51. doi:10.1051/m2an:2002035. URL http://www.numdam.org/articles/10.1051/m2an:2002035/
  52. doi:10.1051/m2an/2012045. URL https://doi.org/10.1051/m2an/2012045
  53. doi:https://doi.org/10.1016/j.anucene.2021.108704. URL https://www.sciencedirect.com/science/article/pii/S0306454921005806
  54. doi:10.1155/2014/491048. URL https://doi.org/10.1155/2014/491048
  55. doi:https://doi.org/10.1007/978-3-319-15093-2.
Citations (2)

Summary

We haven't generated a summary for this paper yet.