Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Coded-Uncoded Caching in Multi-Access Networks with Non-uniform Demands (2401.07288v1)

Published 14 Jan 2024 in cs.IT, cs.NI, and math.IT

Abstract: To address the massive growth of data traffic over cellular networks, increasing spatial reuse of the frequency spectrum by the deployment of small base stations (SBSs) has been considered. For rapid deployment of SBSs in the networks, caching popular content along with new coded caching schemes are proposed. To maximize the cellular network's capacity, densifying it with small base stations is inevitable. In ultra-dense cellular networks, coverage of SBSs may overlap. To this aim, the multi-access caching system, where users potentially can access multiple cache nodes simultaneously, has attracted more attention in recent years. Most previous works on multi-access coded caching, only consider specific conditions such as cyclic wrap-around network topologies. In this paper, we investigate caching in ultra-dense cellular networks, where different users can access different numbers of caches under non-uniform content popularity distribution, and propose Multi-Access Hybrid coded-uncoded Caching (MAHC). We formulate the optimization problem of the proposed scheme for general network topologies and evaluate it for 2-SBS network scenarios. The numerical and simulation results show that the proposed MAHC scheme outperforms optimal conventional uncoded and previous multi-access coded caching (MACC) schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. J. Peter et al., “Ericsson mobility report,” pp. 1–40, 2022.
  2. V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell networks: a survey,” IEEE Communications Magazine, vol. 46, no. 9, pp. 59–67, Sep. 2008.
  3. K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire, “Femtocaching: Wireless content delivery through distributed caching helpers,” IEEE Transactions on Information Theory, vol. 59, no. 12, pp. 8402–8413, Dec 2013.
  4. Y. Chen, M. Ding, J. Li, Z. Lin, G. Mao, and L. Hanzo, “Probabilistic small-cell caching: Performance analysis and optimization,” IEEE Transactions on Vehicular Technology, vol. 66, no. 5, pp. 4341–4354, May 2017.
  5. M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.
  6. A. Ghaffari Sheshjavani, A. Khonsari, S. P. Shariatpanahi, M. Moradian, and A. Dadlani, “Coded caching under non-uniform content popularity distributions with multiple requests,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC), 2020, pp. 1–6.
  7. A. Ghaffari Sheshjavani, A. Khonsari, S. P. Shariatpanahi, and M. Moradian, “Content caching for shared medium networks under heterogeneous users’ behaviors,” Computer Networks, vol. 199, p. 108454, 2021.
  8. A. Ghaffari Sheshjavani, A. Khonsari, S. P. Shariatpanahi, M. Moradian, and A. Dadlani, “Content caching in shared medium networks with non-uniform and user-dependent demands,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 2501–2506.
  9. E. Leonardi and G. Neglia, “Implicit coordination of caches in small cell networks under unknown popularity profiles,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 6, pp. 1276–1285, 2018.
  10. F. Rezaei, B. H. Khalaj, M. Xiao, and M. Skoglund, “Performance analysis of heterogeneous cellular caching networks with overlapping small cells,” IEEE Transactions on Vehicular Technology, vol. 71, no. 2, pp. 1941–1951, 2022.
  11. J. Hachem, N. Karamchandani, and S. N. Diggavi, “Coded caching for multi-level popularity and access,” IEEE Transactions on Information Theory, vol. 63, no. 5, pp. 3108–3141, May 2017.
  12. K. S. Reddy and N. Karamchandani, “Rate-memory trade-off for multi-access coded caching with uncoded placement,” IEEE Transactions on Communications, vol. 68, no. 6, pp. 3261–3274, 2020.
  13. K. K. K. Namboodiri and B. S. Rajan, “Improved lower bounds for multi-access coded caching,” IEEE Transactions on Communications, vol. 70, no. 7, pp. 4454–4468, 2022.
  14. M. Cheng, K. Wan, D. Liang, M. Zhang, and G. Caire, “A novel transformation approach of shared-link coded caching schemes for multiaccess networks,” IEEE Transactions on Communications, vol. 69, no. 11, pp. 7376–7389, 2021.
  15. B. Serbetci, E. Parrinello, and P. Elia, “Multi-access coded caching: gains beyond cache-redundancy,” in 2019 IEEE Information Theory Workshop (ITW), 2019, pp. 1–5.
  16. S. Sasi and B. S. Rajan, “Multi-access coded caching scheme with linear sub-packetization using pdas,” IEEE Transactions on Communications, vol. 69, no. 12, pp. 7974–7985, 2021.
  17. J. Wang, M. Cheng, Y. Wu, and X. Li, “Multi-access coded caching with optimal rate and linear subpacketization under pda and consecutive cyclic placement,” IEEE Transactions on Communications, pp. 1–1, 2023.
  18. K. K. Krishnan Namboodiri and B. Sundar Rajan, “Multi-access coded caching with demand privacy,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 2280–2285.
  19. K. Wan, M. Cheng, D. Liang, and G. Caire, “Multiaccess coded caching with private demands,” in 2022 IEEE International Symposium on Information Theory (ISIT), 2022, pp. 1390–1395.
  20. N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. Diggavi, “Hierarchical coded caching,” in 2014 IEEE International Symposium on Information Theory, June 2014, pp. 2142–2146.
  21. S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server coded caching,” IEEE Transactions on Information Theory, vol. 62, no. 12, pp. 7253–7271, Dec 2016.
  22. R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,” IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp. 836–845, April 2016.
  23. M. Mohammadi Amiri, Q. Yang, and D. Gündüz, “Decentralized caching and coded delivery with distinct cache capacities,” IEEE Transactions on Communications, vol. 65, no. 11, pp. 4657–4669, Nov 2017.
  24. M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in wireless d2d networks,” IEEE Transactions on Information Theory, vol. 62, no. 2, pp. 849–869, Feb 2016.
  25. Y. Lu, W. Chen, and H. V. Poor, “Coded joint pushing and caching with asynchronous user requests,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 8, pp. 1843–1856, Aug 2018.
  26. H. Xu, C. Gong, and X. Wang, “Efficient file delivery for coded prefetching in shared cache networks with multiple requests per user,” IEEE Transactions on Communications, vol. 67, no. 4, pp. 2849–2865, April 2019.
  27. U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,” IEEE Transactions on Information Theory, vol. 63, no. 2, pp. 1146–1158, Feb 2017.
  28. T. Li, M. Ashraphijuo, X. Wang, and P. Fan, “Traffic off-loading with energy-harvesting small cells and coded content caching,” IEEE Transactions on Communications, vol. 65, no. 2, pp. 906–917, Feb 2017.
  29. M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of caching and coded multicasting with random demands,” IEEE Transactions on Information Theory, vol. 63, no. 6, pp. 3923–3949, June 2017.
  30. J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary popularity distributions,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp. 349–366, Jan 2018.
  31. S. A. Saberali, L. Lampe, and I. F. Blake, “Full characterization of optimal uncoded placement for the structured clique cover delivery of nonuniform demands,” IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 633–648, Jan 2020.
  32. M. Zhang, K. Wan, M. Cheng, and G. Caire, “Coded caching for two-dimensional multi-access networks,” in 2022 IEEE International Symposium on Information Theory (ISIT), 2022, pp. 1707–1712.
  33. D. Katyal, P. N. Muralidhar, and B. S. Rajan, “Multi-access coded caching schemes from cross resolvable designs,” IEEE Transactions on Communications, vol. 69, no. 5, pp. 2997–3010, 2021.
  34. P. N. Muralidhar, D. Katyal, and B. S. Rajan, “Maddah-ali-niesen scheme for multi-access coded caching,” in 2021 IEEE Information Theory Workshop (ITW), 2021, pp. 1–6.
  35. F. Brunero and P. Elia, “Fundamental limits of combinatorial multi-access caching,” IEEE Transactions on Information Theory, vol. 69, no. 2, pp. 1037–1056, 2023.

Summary

We haven't generated a summary for this paper yet.