Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Analysis of Smartphone and Standard Tools for Touch Perception Assessment Across Multiple Body Sites (2401.07211v2)

Published 14 Jan 2024 in cs.HC

Abstract: Tactile perception plays an important role in activities of daily living, and it can be impaired in individuals with certain medical conditions. The most common tools used to assess tactile sensation, the Semmes-Weinstein monofilaments and the 128 Hz tuning fork, have poor repeatability and resolution. Long term, we aim to provide a repeatable, high-resolution testing platform that can be used to assess vibrotactile perception through smartphones without the need for an experimenter to be present to conduct the test. We present a smartphone-based vibration perception measurement platform and compare its performance to measurements from standard monofilament and tuning fork tests. We conducted a user study with 36 healthy adults in which we tested each tool on the hand, wrist, and foot, to assess how well our smartphone-based vibration perception thresholds (VPTs) detect known trends obtained from standard tests. The smartphone platform detected statistically significant changes in VPT between the index finger and foot and also between the feet of younger adults and older adults. Our smartphone-based VPT had a moderate correlation to tuning fork-based VPT. Our overarching objective is to develop an accessible smartphone-based platform that can eventually be used to measure disease progression and regression.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. A. U. Alahakone and S. A. Senanayake, “A Real Time Vibrotactile Biofeedback System for Improving Lower Extremity Kinematic Motion During Sports Training,” in IEEE International Conference of Soft Computing and Pattern Recognition, 2009, pp. 610–615.
  2. G. Evreinov, T. Evreinova, and R. Raisamo, “Mobile Games for Training Tactile Perception,” in IFIP International Conference on Entertainment Computing, 2004, pp. 468–475.
  3. J. K. Koehn and K. J. Kuchenbecker, “Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery,” Surgical Endoscopy, vol. 29, pp. 2970–2983, 2015.
  4. P. B. Shull, W. Jirattigalachote, M. A. Hunt, M. R. Cutkosky, and S. L. Delp, “Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention,” Gait & Posture, vol. 40, no. 1, pp. 11–19, 2014.
  5. J. K. Richardson, C. Ching, and E. A. Hurvitz, “The relationship between electromyographically documented peripheral neuropathy and falls,” Journal of the American Geriatrics Society, vol. 40, no. 10, pp. 1008–1012, 1992.
  6. J. L. O’Loughlin, Y. Robitaille, J.-F. Boivin, and S. Suissa, “Incidence of and risk factors for falls and injurious falls among the community-dwelling elderly,” American Journal of Epidemiology, vol. 137, no. 3, pp. 342–354, 1993.
  7. P. Era, M. Schroll, H. Ytting, I. Gause-Nilsson, E. Heikkinen, and B. Steen, “Postural Balance and Its Sensory-Motor Correlates in 75-Year-Old Men and Women: A Cross-National Comparative Study,” Journal of Gerontology: Medical Sciences, vol. 51A, no. 2, pp. M53–M63, 1996.
  8. A. Tiedemann, S. R. Lord, and C. Sherrington, “The Development and Validation of a Brief Performance-Based Fall Risk Assessment Tool for Use in Primary Care,” Journal of Gerontology: Medical Sciences, vol. 65, no. 8, pp. 896–903, 2010.
  9. A. Hafström, “Perceived and Functional Balance Control is Negatively Affected by Diminished Touch and Vibration Sensitivity in Relatively Healthy Older Adults and Elderly,” Gerontology & Geriatric Medicine, vol. 4, pp. 1–10, 2018.
  10. A. G. Maiya, A. Parameshwar, M. Hande, and V. Nandalike, “Relationship Between Glycated Hemoglobin and Vibration Perception Threshold in Diabetic Peripheral Neuropathy,” The International Journal of Lower Extremity Wounds, vol. 19, no. 2, pp. 120–124, 2020.
  11. R. Pop-Busui, A. J. Boulton, E. L. Feldman, V. Bril, R. Freeman, R. A. Malik, J. M. Sosenko, and D. Ziegler, “Diabetic Neuropathy: A Position Statement by the American Diabetes Association,” Diabetes Care, vol. 40, pp. 136–154, 2017.
  12. T. D. Rossing, D. A. Russell, and D. E. Brown, “On the acoustics of tuning forks,” American Journal of Physics, vol. 60, no. 7, pp. 620–626, 1992.
  13. J. Dros, A. Wewerinke, P. J. Bindels, and H. C. van Weert, “Accuracy of Monofilament Testing to Diagnose Peripheral Neuropathy: A Systematic Review,” Annals of Family Medicine, vol. 7, no. 6, pp. 555–558, 2009.
  14. K. T. Yoshida, J. X. Kiernan, R. A. G. Adenekan, S. H. Trinh, A. J. Lowber, A. M. Okamura, and C. M. Nunez, “Cognitive and Physical Activities Impair Perception of Smartphone Vibrations,” Transactions on Haptics, in press, 2023.
  15. J. R. Blum, P. E. Fortin, F. Al Taha, P. Alirezaee, M. Demers, A. Weill-Duflos, and J. R. Cooperstock, “Getting Your Hands Dirty Outside the Lab: A Practical Primer for Conducting Wearable Vibrotactile Haptics Research,” IEEE Transactions on Haptics, vol. 12, no. 3, pp. 232–246, 2019.
  16. R. A. G. Adenekan, A. J. Lowber, B. N. Huerta, A. M. Okamura, K. T. Yoshida, and C. M. Nunez, “Feasibility of Smartphone Vibrations as a Sensory Diagnostic Tool,” Haptics: Science, Technology, Applications, pp. 337–339, 2022.
  17. W. O. Torres, M. E. Abbott, Y. Wang, and H. S. Stuart, “Skin sensitivity assessment using smartphone haptic feedback,” IEEE Open Journal of Engineering in Medicine and Biology, 2023.
  18. J. D. May and M. W. J. Morris, “Mobile phone generated vibrations used to detect diabetic peripheral neuropathy,” Foot and Ankle Surgery, vol. 23, no. 4, pp. 281–284, 2017.
  19. M. Jasmin, S. Yusuf, S. Syahrul, and E. A. Abrar, “Validity and Reliability of a Vibration-Based Cell Phone in Detecting Peripheral Neuropathy among Patients with a Risk of Diabetic Foot Ulcer,” The International Journal of Lower Extremity Wounds, pp. 1–8, 2021.
  20. H. Levitt, “Transformed up-down methods in psychoacoustics,” The Journal of the Acoustical society of America, vol. 49, no. 2B, pp. 467–477, 1971.
  21. M. R. Leek, “Adaptive procedures in psychophysical research,” Perception & psychophysics, vol. 63, no. 8, pp. 1279–1292, 2001.
  22. R. T. Verrillo, “Vibration sensation in humans,” Music Perception, vol. 9, no. 3, pp. 281–302, 1992.
  23. A. R. Peon and D. Prattichizzo, “Reaction times to constraint violation in haptics: comparing vibration, visual and audio stimuli,” in World Haptics Conference, 2013, pp. 657–661.
  24. P. Era, J. Jokela, and E. Heikkinen, “Reaction and Movement Times in Men of Different Ages: A Population Study,” Perceptual and Motor Skills, vol. 63, no. 1, pp. 111–130, 1986.
  25. Z. Yang, Y. Zhang, R. Chen, Y. Huang, L. Ji, F. Sun, T. Hong, and S. Zhan, “Simple tests to screen for diabetic peripheral neuropathy,” The Cochrane Database of Systematic Reviews, vol. 2018, no. 7, 2018.
  26. (2011) Touch Test Sensory Evaluator. North Coast Medical, Inc. [Accessed: 08-Feb-2023]. Available: https://www.ncmedical.com/wp-content/uploads/2011/07/Touch-Test-Sensory-Evaluator_11_web.pdf.
  27. M. Morioka, D. J. Whitehouse, and M. J. Griffin, “Vibrotactile thresholds at the fingertip, volar forearm, large toe, and heel,” Somatosensory & Motor Research, vol. 25, no. 2, pp. 101–112, 2008.
  28. C. Wells, L. M. Ward, R. Chua, and J. T. Inglis, “Regional Variation and Changes With Ageing in Vibrotactile Sensitivity in the Human Footsole,” Journal of Gerontology: Biological Sciences, vol. 58A, no. 8, pp. 680–686, 2003.
Citations (2)

Summary

We haven't generated a summary for this paper yet.