Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling Advantage in Approximate Optimization with Quantum Annealing (2401.07184v1)

Published 14 Jan 2024 in quant-ph, cond-mat.dis-nn, and cond-mat.stat-mech

Abstract: Quantum annealing is a heuristic optimization algorithm that exploits quantum evolution to approximately find lowest energy states. Quantum annealers have scaled up in recent years to tackle increasingly larger and more highly connected discrete optimization and quantum simulation problems. Nevertheless, despite numerous attempts, a computational quantum advantage in exact optimization using quantum annealing hardware has so far remained elusive. Here, we present evidence for a quantum annealing scaling advantage in approximate optimization. The advantage is relative to the top classical heuristic algorithm: parallel tempering with isoenergetic cluster moves (PT-ICM). The setting is a family of 2D spin-glass problems with high-precision spin-spin interactions. To achieve this advantage, we implement quantum annealing correction (QAC): an embedding of a bit-flip error-correcting code with energy penalties that leverages the properties of the D-Wave Advantage quantum annealer to yield over 1,300 error-suppressed logical qubits on a degree-5 interaction graph. We generate random spin-glass instances on this graph and benchmark their time-to-epsilon, a generalization of the time-to-solution metric for low-energy states. We demonstrate that with QAC, quantum annealing exhibits a scaling advantage over PT-ICM at sampling low energy states with an optimality gap of at least 1.0%. This amounts to the first demonstration of an algorithmic quantum speedup in approximate optimization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. T. Kadowaki and H. Nishimori, Quantum annealing in the transverse Ising model, Physical Review E 58, 5355 (1998).
  2. S. Mandrà, H. G. Katzgraber, and C. Thomas, The pitfalls of planar spin-glass benchmarks: RaIsing the bar for quantum annealers (again), Quantum Science and Technology 2, 038501 (2017).
  3. T. Albash and D. A. Lidar, Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing, Physical Review X 8, 031016 (2018).
  4. S. Mandrà and H. G. Katzgraber, A deceptive step towards quantum speedup detection, Quantum Science and Technology 3, 04LT01 (2018).
  5. Z. Zhu, A. J. Ochoa, and H. G. Katzgraber, Efficient Cluster Algorithm for Spin Glasses in Any Space Dimension, Physical Review Letters 115, 077201 (2015).
  6. K. L. Pudenz, T. Albash, and D. A. Lidar, Error-corrected quantum annealing with hundreds of qubits, Nature Communications 5, 3243 (2014).
  7. Gurobi Optimization: MIPGap.
  8. E. J. Crosson and D. A. Lidar, Prospects for quantum enhancement with diabatic quantum annealing, Nature Reviews Physics 3, 466 (2021).
  9. A. M. Childs, E. Farhi, and J. Preskill, Robustness of adiabatic quantum computation, Phys. Rev. A 65, 012322 (2001).
  10. M. H. S. Amin, D. V. Averin, and J. A. Nesteroff, Decoherence in adiabatic quantum computation, Phys. Rev. A 79, 022107 (2009).
  11. T. Albash and D. A. Lidar, Decoherence in adiabatic quantum computation, Physical Review A 91, 062320 (2015).
  12. T. Albash, V. Martin-Mayor, and I. Hen, Temperature scaling law for quantum annealing optimizers, Physical Review Letters 119, 110502 (2017).
  13. T. Albash, V. Martin-Mayor, and I. Hen, Analog errors in Ising machines, Quantum Sci. Technol. 4, 02LT03 (2019).
  14. E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549, 172 EP (2017).
  15. S. P. Jordan, E. Farhi, and P. W. Shor, Error-correcting codes for adiabatic quantum computation, Physical Review A 74, 052322 (2006).
  16. D. A. Lidar, Towards fault tolerant adiabatic quantum computation, Phys. Rev. Lett. 100, 160506 (2008).
  17. K. C. Young, M. Sarovar, and R. Blume-Kohout, Error suppression and error correction in adiabatic quantum computation: Techniques and challenges, Phys. Rev. X 3, 041013 (2013).
  18. A. D. Bookatz, E. Farhi, and L. Zhou, Error suppression in Hamiltonian-based quantum computation using energy penalties, Physical Review A 92, 022317 (2015).
  19. Z. Jiang and E. G. Rieffel, Non-commuting two-local hamiltonians for quantum error suppression, Quant. Inf. Proc. 16, 89 (2017).
  20. M. Marvian and D. A. Lidar, Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes, Physical Review Letters 118, 030504 (2017).
  21. W. Vinci, T. Albash, and D. A. Lidar, Nested quantum annealing correction, npj Quantum Information 2, 16017 (2016).
  22. L. Trevisan, Inapproximability of Combinatorial Optimization Problems, arXiv e-prints  (2004), arxiv:cs/0409043 .
  23. S. Arora and B. Barak, Computational Complexity: A Modern Approach (Cambridge University Press, 2009).
  24. A. Lucas, Ising formulations of many NP problems, Front. Phys. 2, 5 (2014).
  25. W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a quantum phase transition, Physical Review Letters 95, 105701 (2005).
  26. A. del Campo, Universal statistics of topological defects formed in a quantum phase transition, Physical Review Letters 121, 200601 (2018).
  27. H. Munoz Bauza, TAMC software package (2023a).
  28. H. Munoz Bauza, PegasusTools Python package (2023b).
  29. A. Selby, Efficient subgraph-based sampling of Ising-type models with frustration, arXiv:1409.3934  (2014).
  30. H. G. Katzgraber, F. Hamze, and R. S. Andrist, Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines, Physical Review X 4, 021008 (2014).
  31. J.-P. Bouchaud, F. Krzakala, and O. C. Martin, Energy exponents and corrections to scaling in Ising spin glasses, Physical Review B 68, 224404 (2003).
Citations (10)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com