Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Federated Learning with Asynchronous Parameter Sharing for Large-scale IoT Networks (2401.07122v1)

Published 13 Jan 2024 in cs.IT and math.IT

Abstract: Federated learning (FL) enables wireless terminals to collaboratively learn a shared parameter model while keeping all the training data on devices per se. Parameter sharing consists of synchronous and asynchronous ways: the former transmits parameters as blocks or frames and waits until all transmissions finish, whereas the latter provides messages about the status of pending and failed parameter transmission requests. Whatever synchronous or asynchronous parameter sharing is applied, the learning model shall adapt to distinct network architectures as an improper learning model will deteriorate learning performance and, even worse, lead to model divergence for the asynchronous transmission in resource-limited large-scale Internet-of-Things (IoT) networks. This paper proposes a decentralized learning model and develops an asynchronous parameter-sharing algorithm for resource-limited distributed IoT networks. This decentralized learning model approaches a convex function as the number of nodes increases, and its learning process converges to a global stationary point with a higher probability than the centralized FL model. Moreover, by jointly accounting for the convergence bound of federated learning and the transmission delay of wireless communications, we develop a node scheduling and bandwidth allocation algorithm to minimize the transmission delay. Extensive simulation results corroborate the effectiveness of the distributed algorithm in terms of fast learning model convergence and low transmission delay.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. M. Zhang, K. Sapra, S. Fidler, S. Yeung, and J. M. Alvarez, “Personalized federated learning with first order model optimization,” in Proc. Int. Conf. Learn. Representations (ICLR), May 2021.
  2. R. Dai, L. Shen, F. He, X. Tian, and D. Tao, “DisPFL: Towards communication-efficient personalized federated learning via decentralized sparse training,” in Proc. Int. Conf. Machine Learn. (ICML), vol. 162, Jul. 2022, pp. 4587–4604.
  3. Y. Esfandiari, S. Y. Tan, Z. Jiang, A. Balu, E. Herron, C. Hegde, and S. Sarkar, “Cross-gradient aggregation for decentralized learning from non-iid data,” in Proc. Int. Conf. Mach. Learn. (ICML), vol. 139, Jul. 2021, pp. 3036–3046.
  4. S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan, “Adaptive federated learning in resource-constrained edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1205–1221, Mar. 2019.
  5. H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor, “Scheduling policies for federated learning in wireless networks,” IEEE Trans. Commun., vol. 68, no. 1, pp. 317–333, Jan. 2020.
  6. H. Lee and J. Lee, “Adaptive transmission scheduling in wireless networks for asynchronous federated learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3673–3687, Dec. 2021.
  7. Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation,” IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 10, pp. 4229–4238, Dec. 2020.
  8. K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2022–2035, Mar. 2020.
  9. J. Xu and H. Wang, “Client selection and bandwidth allocation in wireless federated learning networks: A long-term perspective,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1188–1200, Feb. 2021.
  10. N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong, “Federated learning over wireless networks: Optimization model design and analysis,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Apr. 2019, pp. 1387–1395.
  11. Y. Bi and A. Tang, “Duality gap estimation via a refined Shapley-Folkman lemma,” SIAM J. Optim., vol. 30, no. 2, pp. 1094–1118, Aug. 2020.
  12. H. Zhang, J. Shao, and R. Salakhutdinov, “Deep neural networks with multi-branch architectures are intrinsically less non-convex,” in Proc. Artif. Intell. Stat. (AISTATS), Jun. 2019, pp. 1099–1109.
  13. V. Smith, C. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task learning,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), Dec. 2017, pp. 4424–4434.
  14. O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 31, Dec. 2018, pp. 404–413.
  15. J. Ma, Z. Zhao, J. Chen, A. Li, L. Hong, and E. H. Chi, “SNR: Sub-network routing for flexible parameter sharing in multi-task learning,” in Proc. AAAI Conf. Artif. Intell. (AAAI), Feb. 2019, pp. 216–223.
  16. H. Xie, M. Xia, P. Wu, S. Wang, and H. V. Poor, “Edge learning for large-scale Internet of Things with task-oriented efficient communication,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 9517–9532, Dec. 2023.
  17. J. Liu, H. Xu, L. Wang, Y. Xu, C. Qian, J. Huang, and H. Huang, “Adaptive asynchronous federated learning in resource-constrained edge computing,” IEEE Trans. Mob. Comput., vol. 22, no. 2, pp. 674–690, Feb. 2023.
  18. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci., vol. 2, no. 1, pp. 183–202, Mar. 2009.
  19. H. T. Nguyen, V. Sehwag, S. Hosseinalipour, C. G. Brinton, M. Chiang, and H. V. Poor, “Fast-convergent federated learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 201–218, Jan. 2021.
  20. G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for low-latency federated edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 491–506, Jan. 2020.
  21. Q. Yao, J. T. Kwok, T. Wang, and T. Liu, “Large-scale low-rank matrix learning with non-convex regularizers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 11, pp. 2628–2643, Nov. 2019.
  22. S. Wan, J. Lu, P. Fan, Y. Shao, C. Peng, and K. B. Letaief, “Convergence analysis and system design for federated learning over wireless networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3622–3639, Oct. 2021.
  23. J. Ren, G. Yu, and G. Ding, “Accelerating DNN training in wireless federated edge learning systems,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 219–232, Jan. 2021.
  24. W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device scheduling and resource allocation for latency-constrained wireless federated learning,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 453–467, Jan. 2021.
  25. J. Ren, Y. He, D. Wen, G. Yu, K. Huang, and D. Guo, “Scheduling for cellular federated edge learning with importance and channel awareness,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7690–7703, Nov. 2020.
  26. M. Salehi and E. Hossain, “Federated learning in unreliable and resource-constrained cellular wireless networks,” IEEE Trans. Commun., vol. 69, no. 8, pp. 5136–5151, Aug. 2021.
  27. M. Xia and S. Aïssa, “Unified analytical volume distribution of Poisson-Delaunay simplex and its application to coordinated multi-point transmission,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4912–4921, July 2018.
  28. Y. Li, M. Xia, and S. Aïssa, “Coordinated multi-point transmission: A Poisson-Delaunay triangulation based approach,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 2946–2959, May 2020.
  29. V. Nguyen, S. K. Sharma, T. X. Vu, S. Chatzinotas, and B. E. Ottersten, “Efficient federated learning algorithm for resource allocation in wireless IoT networks,” IEEE Internet Things J., vol. 8, no. 5, pp. 3394–3409, Mar. 2021.
  30. M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and H. V. Poor, “Distributed learning in wireless networks: Recent progress and future challenges,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3579–3605, Dec. 2021.
  31. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 770–778.
  32. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Int. Conf. Learn. Representations (ICLR),, May 2015.
  33. J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for communication-efficient distributed optimization,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), Dec. 2018, pp. 1306–1316.
  34. J. Feng, W. Zhang, Q. Pei, J. Wu, and X. Lin, “Heterogeneous computation and resource allocation for wireless powered federated edge learning systems,” IEEE Trans. Commun., vol. 70, no. 5, pp. 3220–3233, May 2022.
  35. L. Deng, “The MNIST database of handwritten digit images for machine learning research,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 141–142, Nov. 2012.
  36. A. Krizhevsky and et al., “Learning multiple layers of features from tiny images,” Tech. Rep., vol. 1, no. 4, pp. 131–138, Apr. 2009.
  37. Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang, “FedSA: A semi-asynchronous federated learning mechanism in heterogeneous edge computing,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3654–3672, Dec. 2021.
Citations (4)

Summary

We haven't generated a summary for this paper yet.