Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative AI-enabled Quantum Computing Networks and Intelligent Resource Allocation (2401.07120v1)

Published 13 Jan 2024 in cs.NI, eess.SP, and quant-ph

Abstract: Quantum computing networks enable scalable collaboration and secure information exchange among multiple classical and quantum computing nodes while executing large-scale generative AI computation tasks and advanced quantum algorithms. Quantum computing networks overcome limitations such as the number of qubits and coherence time of entangled pairs and offer advantages for generative AI infrastructure, including enhanced noise reduction through distributed processing and improved scalability by connecting multiple quantum devices. However, efficient resource allocation in quantum computing networks is a critical challenge due to factors including qubit variability and network complexity. In this article, we propose an intelligent resource allocation framework for quantum computing networks to improve network scalability with minimized resource costs. To achieve scalability in quantum computing networks, we formulate the resource allocation problem as stochastic programming, accounting for the uncertain fidelities of qubits and entangled pairs. Furthermore, we introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation to resolve the proposed stochastic resource allocation problem efficiently. Finally, we optimize the resource allocation in heterogeneous quantum computing networks supporting quantum generative learning applications and propose a multi-agent RL-based algorithm to learn the optimal resource allocation policies without prior knowledge.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. M. Caleffi, M. Amoretti, D. Ferrari, D. Cuomo, J. Illiano, A. Manzalini, and A. S. Cacciapuoti, “Distributed quantum computing: a survey,” arXiv preprint arXiv:2212.10609, 2022.
  2. Y. Cao, Y. Zhao, Q. Wang, J. Zhang, S. X. Ng, and L. Hanzo, “The evolution of quantum key distribution networks: On the road to the qinternet,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 839–894, 2022.
  3. C. Ren, H. Yu, R. Yan, M. Xu, Y. Shen, H. Zhu, D. Niyato, Z. Y. Dong, and L. C. Kwek, “Towards quantum federated learning,” arXiv preprint arXiv:2306.09912, 2023.
  4. L. Chen, K. Xue, J. Li, N. Yu, R. Li, Q. Sun, and J. Lu, “Simqn: A network-layer simulator for the quantum network investigation,” IEEE Network, 2023.
  5. Y. Cao, Y. Zhao, J. Li, R. Lin, J. Zhang, and J. Chen, “Multi-tenant provisioning for quantum key distribution networks with heuristics and reinforcement learning: A comparative study,” IEEE Transactions on Network and Service Management, vol. 17, no. 2, pp. 946–957, 2020.
  6. Z. Zhu, H. Zhao, H. He, Y. Zhong, S. Zhang, Y. Yu, and W. Zhang, “Diffusion models for reinforcement learning: A survey,” arXiv preprint arXiv:2311.01223, 2023.
  7. Z. Li, K. Xue, J. Li, L. Chen, R. Li, Z. Wang, N. Yu, D. S. Wei, Q. Sun, and J. Lu, “Entanglement-assisted quantum networks: Mechanics, enabling technologies, challenges, and research directions,” IEEE Communications Surveys & Tutorials, 2023.
  8. Y. Mao, Y. Liu, and Y. Yang, “Qubit allocation for distributed quantum computing,” in IEEE INFOCOM 2023-IEEE Conference on Computer Communications, pp. 1–10, IEEE, 2023.
  9. J. Li, M. Wang, K. Xue, R. Li, N. Yu, Q. Sun, and J. Lu, “Fidelity-guaranteed entanglement routing in quantum networks,” IEEE Transactions on Communications, vol. 70, no. 10, pp. 6748–6763, 2022.
  10. P.-Y. Kong, “A review of quantum key distribution protocols in the perspective of smart grid communication security,” IEEE Systems Journal, vol. 16, no. 1, pp. 41–54, 2020.
  11. Y. Ren, R. Xie, F. R. Yu, T. Huang, and Y. Liu, “Nft-based intelligence networking for connected and autonomous vehicles: A quantum reinforcement learning approach,” IEEE Network, vol. 36, no. 6, pp. 116–124, 2022.
  12. R. Kaewpuang, M. Xu, D. T. Hoang, D. Niyato, H. Yu, R. Li, Z. Xiong, and J. Kang, “Elastic entangled pair and qubit resource management in quantum cloud computing,” arXiv preprint arXiv:2307.13185, 2023.
  13. Y. Cao, Y. Zhao, J. Zhang, Q. Wang, D. Niyato, and L. Hanzo, “From single-protocol to large-scale multi-protocol quantum networks,” IEEE Network, vol. 36, no. 5, pp. 14–22, 2022.
  14. M. Xu, D. Niyato, Z. Xiong, J. Kang, X. Cao, X. S. Shen, and C. Miao, “Quantum-secured space-air-ground integrated networks: Concept, framework, and case study,” IEEE Wireless Communications, 2022.
  15. J. Romero, J. P. Olson, and A. Aspuru-Guzik, “Quantum autoencoders for efficient compression of quantum data,” Quantum Science and Technology, vol. 2, no. 4, p. 045001, 2017.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com