Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum many-body scars from unstable periodic orbits (2401.06848v1)

Published 12 Jan 2024 in cond-mat.quant-gas, cond-mat.stat-mech, cond-mat.str-el, and quant-ph

Abstract: Unstable periodic orbits (UPOs) play a key role in the theory of chaos, constituting the "skeleton" of classical chaotic systems and "scarring" the eigenstates of the corresponding quantum system. Recently, nonthermal many-body eigenstates embedded in an otherwise thermal spectrum have been identified as a many-body generalization of quantum scars. The latter, however, are not clearly associated to a chaotic phase space, and the connection between the single- and many-body notions of quantum scars remains therefore incomplete. Here, we find the first quantum many-body scars originating from UPOs of a chaotic phase space. Remarkably, these states verify the eigenstate thermalization hypothesis, and we thus refer to them as thermal quantum many-body scars. While they do not preclude thermalization, their spectral structure featuring approximately equispaced towers of states yields an anomalous oscillatory dynamics preceding thermalization for wavepackets initialized on an UPO. Remarkably, our model hosts both types of scars, thermal and nonthermal, and allows to study the crossover between the two. Our work illustrates the fundamental principle of classical-quantum correspondence in a many-body system, and its limitations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Vol. 1 (Gauthier-Villars et fils, imprimeurs-libraires, 1892).
  2. M. C. Gutzwiller, Journal of Mathematical Physics 12, 343 (1971).
  3. M. C. Gutzwiller, Chaos in classical and quantum mechanics, Vol. 1 (Springer Science & Business Media, 2013).
  4. E. J. Heller, Physical Review Letters 53, 1515 (1984).
  5. C.-J. Lin and O. I. Motrunich, Phys. Rev. Lett. 122, 173401 (2019).
  6. M. Schecter and T. Iadecola, Phys. Rev. Lett. 123, 147201 (2019).
  7. P. A. M. Dirac, Mathematical Proceedings of the Cambridge Philosophical Society 26, 376 (1930).
  8. P. Weinberg and M. Bukov, SciPost Phys. 2, 003 (2017).
  9. J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
  10. J. M. Deutsch, Reports on Progress in Physics 81, 082001 (2018).
  11. See the SM of Evrard et al. (2024) on the details on lyapunov exponent calculation. (a).
  12. M. V. Berry and M. Robnik, J. Phys. A: Math. and Gen. 17, 2413 (1984).
  13. S. Sachdev, Physics world 12, 33 (1999).
  14. J. Hauschild and F. Pollmann, SciPost Phys. Lect. Notes , 5 (2018), code available from https://github.com/tenpy/tenpy, arXiv:1805.00055 .
  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 1: Mechanics, Course of Theoretical Physics (Butterworth-Heinemann, 1976).
  16. S. Sinha and S. Sinha, Phys. Rev. Lett. 125, 134101 (2020).
  17. M. Gaudin, The Bethe Wavefunction (Cambridge University Press, 2014).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com