Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FPT Approximation for Capacitated Sum of Radii (2401.06714v1)

Published 12 Jan 2024 in cs.DS

Abstract: We consider the capacitated clustering problem in general metric spaces where the goal is to identify $k$ clusters and minimize the sum of the radii of the clusters (we call this the Capacitated-$k$-sumRadii problem). We are interested in fixed-parameter tractable (FPT) approximation algorithms where the running time is of the form $f(k) \cdot \text{poly}(n)$, where $f(k)$ can be an exponential function of $k$ and $n$ is the number of points in the input. In the uniform capacity case, Bandyapadhyay et al. recently gave a $4$-approximation algorithm for this problem. Our first result improves this to an FPT $3$-approximation and extends to a constant factor approximation for any $L_p$ norm of the cluster radii. In the general capacities version, Bandyapadhyay et al. gave an FPT $15$-approximation algorithm. We extend their framework to give an FPT $(4 + \sqrt{13})$-approximation algorithm for this problem. Our framework relies on a novel idea of identifying approximations to optimal clusters by carefully pruning points from an initial candidate set of points. This is in contrast to prior results that rely on guessing suitable points and building balls of appropriate radii around them. On the hardness front, we show that assuming the Exponential Time Hypothesis, there is a constant $c > 1$ such that any $c$-approximation algorithm for the non-uniform capacity version of this problem requires running time $2{\Omega \left(\frac{k}{polylog(k)} \right)}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Approximate Clustering with Same-Cluster Queries. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1–40:21, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2018/8335, doi:10.4230/LIPIcs.ITCS.2018.40.
  2. FPT constant-approximations for capacitated clustering to minimize the sum of cluster radii. In Erin W. Chambers and Joachim Gudmundsson, editors, 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 12:1–12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.SoCG.2023.12.
  3. Approximate Clustering via Metric Partitioning. In Seok-Hee Hong, editor, 27th International Symposium on Algorithms and Computation (ISAAC 2016), volume 64 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1–15:13, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2016/6775, doi:10.4230/LIPIcs.ISAAC.2016.15.
  4. B. Behsaz and M.R. Salavatipour. On minimum sum of radii and diameters clustering. Algorithmica, 73:143–165, 2015. URL: https://doi.org/10.1007/s00453-014-9907-3.
  5. Approximate clustering via core-sets. In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, page 250–257, New York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/509907.509947.
  6. Clustering to minimize the sum of cluster diameters. J. Comput. Syst. Sci., 68(2):417–441, 2004. doi:10.1016/j.jcss.2003.07.014.
  7. C.L.Monma and S.Suri. Partitioning points and graphs to minimize the maximum or the sum of diameters. Graph Theory, Combinatorics and Applications, pages 880-912, 1991.
  8. Irit Dinur. The pcp theorem by gap amplification. J. ACM, 54(3):12–es, jun 2007. doi:10.1145/1236457.1236459.
  9. Approximation algorithms for clustering to minimize the sum of diameters. Nord. J. Comput., 7(3):185–203, 2000.
  10. Improved Polynomial-Time Approximations for Clustering with Minimum Sum of Radii or Diameters. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms (ESA 2022), volume 244 of Leibniz International Proceedings in Informatics (LIPIcs), pages 56:1–56:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2022/16994, doi:10.4230/LIPIcs.ESA.2022.56.
  11. On metric clustering to minimize the sum of radii. Algorithmica, 57:484–498, 2010. URL: https://doi.org/10.1007/s00453-009-9282-7.
  12. On clustering to minimize the sum of radii. SIAM Journal on Computing, 41(1):47–60, 2012. arXiv:https://doi.org/10.1137/100798144, doi:10.1137/100798144.
  13. Cluster analysis and mathematical programming. Math. Program., 79:191–215, 1997. doi:10.1007/BF02614317.
  14. Dynamic clustering to minimize the sum of radii. Algorithmica, 82:3183–3194, 2020. URL: https://doi.org/10.1007/s00453-020-00721-7.
  15. Capacitated sum-of-radii clustering: An FPT approximation. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 62:1–62:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.62.
Citations (2)

Summary

We haven't generated a summary for this paper yet.