2000 character limit reached
Causal Self-Dual Electrodynamics (2401.06707v3)
Published 12 Jan 2024 in hep-th
Abstract: Many theories of nonlinear electrodynamics (NLED) that have been proposed in physical contexts involving strong fields are causal for weak fields but acausal for strong fields. We show that for any such theory there is a unique causal and self-dual (electromagnetic duality invariant) theory with the same Lagrangian at zero magnetic field. This follows from a construction of the general causal self-dual NLED, which shows that strong-field causality is implied by weak-field causality for self-dual theories. We illustrate our results with explicit examples.
- M. Born, “Modified field equations with a finite radius of the electron,” Nature 132 (1933) no.3329, 282.1
- M. Born and L. Infeld, “Foundations of the new field theory,” Proc. Roy. Soc. Lond. A 144 (1934) no.852, 425-451 doi:10.1098/rspa.1934.0059
- G. Boillat, “Vitesses des ondes électrodynamiques et lagrangiens exceptionnels,” Ann. Inst. H. Poincare Phys. Theor. 5 (1966) no.3, 217-225; “Nonlinear electrodynamics - Lagrangians and equations of motion,” J. Math. Phys. 11 (1970) no.3, 941-951
- J. Plebański, “Lectures on non-linear electrodynamics”, (The Niels Bohr Institute and NORDITA, Copenhagen, 1970).
- G. O. Schellstede, V. Perlick and C. Lämmerzahl, “On causality in nonlinear vacuum electrodynamics of the Plebański class,” Annalen Phys. 528 (2016) no.9-10, 738-749 [arXiv:1604.02545 [gr-qc]].
- I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “ModMax meets Susy,” JHEP 10 (2021), 031 [arXiv:2106.07547 [hep-th]].
- J. G. Russo and P. K. Townsend, “Born Again,” [arXiv:2401.04167 [hep-th]].
- I. Bialynicki-Birula, “Nonlinear Electrodynamics: Variations on a theme by Born and Infeld”, in Quantum Theory of Particles and Fields, eds. B. Jancewicz and J. Lukierski, (World Scientific, 1983) pp. 31-48.
- J. G. Russo and P. K. Townsend, “Nonlinear electrodynamics without birefringence,” JHEP 01 (2023), 039 [arXiv:2211.10689 [hep-th]].
- D. P. Sorokin, “Introductory Notes on Non-linear Electrodynamics and its Applications,” Fortsch. Phys. 70 (2022) no.7-8, 2200092 [arXiv:2112.12118 [hep-th]].
- C. Ferko, S. M. Kuzenko, L. Smith and G. Tartaglino-Mazzucchelli, “Duality-invariant nonlinear electrodynamics and stress tensor flows,” Phys. Rev. D 108 (2023) no.10, 106021 [arXiv:2309.04253 [hep-th]].
- I. Bialynicki-Birula, “Field theory of photon dust,” Acta Phys. Polon. B 23 (1992), 553-559.
- E. Schrödinger, “Contributions to Born’s new theory of the electromagnetic field,” Proc. Roy. Soc. Lond. A 150 (1935) no.870, 465-477
- I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “A non-linear duality-invariant conformal extension of Maxwell’s equations,” Phys. Rev. D 102 (2020), 121703 [arXiv:2007.09092 [hep-th]];
- I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “On p-form gauge theories and their conformal limits,” JHEP 03 (2021), 022 [arXiv:2012.09286 [hep-th]].
- G. W. Gibbons and D. A. Rasheed, “Electric - magnetic duality rotations in nonlinear electrodynamics,” Nucl. Phys. B 454 (1995), 185-206 [arXiv:hep-th/9506035 [hep-th]].
- R. Courant and D. Hilbert, “Methods of Mathematical Physics,” Vol. II (Interscience, 1962), p. 91.
- M. Perry and J. H. Schwarz, “Interacting chiral gauge fields in six-dimensions and Born-Infeld theory,” Nucl. Phys. B 489 (1997), 47-64 [arXiv:hep-th/9611065 [hep-th]].