Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PolyTOPS: Reconfigurable and Flexible Polyhedral Scheduler (2401.06665v1)

Published 12 Jan 2024 in cs.DC, cs.CL, and cs.PF

Abstract: Polyhedral techniques have been widely used for automatic code optimization in low-level compilers and higher-level processes. Loop optimization is central to this technique, and several polyhedral schedulers like Feautrier, Pluto, isl and Tensor Scheduler have been proposed, each of them targeting a different architecture, parallelism model, or application scenario. The need for scenario-specific optimization is growing due to the heterogeneity of architectures. One of the most critical cases is represented by NPUs (Neural Processing Units) used for AI, which may require loop optimization with different objectives. Another factor to be considered is the framework or compiler in which polyhedral optimization takes place. Different scenarios, depending on the target architecture, compilation environment, and application domain, may require different kinds of optimization to best exploit the architecture feature set. We introduce a new configurable polyhedral scheduler, PolyTOPS, that can be adjusted to various scenarios with straightforward, high-level configurations. This scheduler allows the creation of diverse scheduling strategies that can be both scenario-specific (like state-of-the-art schedulers) and kernel-specific, breaking the concept of a one-size-fits-all scheduler approach. PolyTOPS has been used with isl and CLooG as code generators and has been integrated in MindSpore AKG deep learning compiler. Experimental results in different scenarios show good performance: a geomean speedup of 7.66x on MindSpore (for the NPU Ascend architecture) hybrid custom operators over isl scheduling, a geomean speedup up to 1.80x on PolyBench on different multicore architectures over Pluto scheduling. Finally, some comparisons with different state-of-the-art tools are presented in the PolyMage scenario.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (11)
  1. Gianpietro Consolaro (1 paper)
  2. Zhen Zhang (384 papers)
  3. Harenome Razanajato (1 paper)
  4. Nelson Lossing (1 paper)
  5. Nassim Tchoulak (3 papers)
  6. Adilla Susungi (2 papers)
  7. Artur Cesar Araujo Alves (1 paper)
  8. Renwei Zhang (1 paper)
  9. Denis Barthou (5 papers)
  10. Corinne Ancourt (1 paper)
  11. Cedric Bastoul (7 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com