Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CTMCs with Imprecisely Timed Observations (2401.06574v2)

Published 12 Jan 2024 in cs.LO

Abstract: Labeled continuous-time Markov chains (CTMCs) describe processes subject to random timing and partial observability. In applications such as runtime monitoring, we must incorporate past observations. The timing of these observations matters but may be uncertain. Thus, we consider a setting in which we are given a sequence of imprecisely timed labels called the evidence. The problem is to compute reachability probabilities, which we condition on this evidence. Our key contribution is a method that solves this problem by unfolding the CTMC states over all possible timings for the evidence. We formalize this unfolding as a Markov decision process (MDP) in which each timing for the evidence is reflected by a scheduler. This MDP has infinitely many states and actions in general, making a direct analysis infeasible. Thus, we abstract the continuous MDP into a finite interval MDP (iMDP) and develop an iterative refinement scheme to upper-bound conditional probabilities in the CTMC. We show the feasibility of our method on several numerical benchmarks and discuss key challenges to further enhance the performance.

Summary

We haven't generated a summary for this paper yet.