Machine learning a fixed point action for SU(3) gauge theory with a gauge equivariant convolutional neural network (2401.06481v2)
Abstract: Fixed point lattice actions are designed to have continuum classical properties unaffected by discretization effects and reduced lattice artifacts at the quantum level. They provide a possible way to extract continuum physics with coarser lattices, thereby allowing one to circumvent problems with critical slowing down and topological freezing toward the continuum limit. A crucial ingredient for practical applications is to find an accurate and compact parametrization of a fixed point action, since many of its properties are only implicitly defined. Here we use machine learning methods to revisit the question of how to parametrize fixed point actions. In particular, we obtain a fixed point action for four-dimensional SU(3) gauge theory using convolutional neural networks with exact gauge invariance. The large operator space allows us to find superior parametrizations compared to previous studies, a necessary first step for future Monte Carlo simulations and scaling studies.
- K. G. Wilson, Confinement of Quarks, Phys. Rev. D 10, 2445 (1974).
- Y. Aoki et al. (Flavour Lattice Averaging Group (FLAG)), FLAG Review 2021, Eur. Phys. J. C 82, 869 (2022), arXiv:2111.09849 [hep-lat] .
- S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Critical slowing down and error analysis in lattice QCD simulations, Nucl. Phys. B 845, 93 (2011), arXiv:1009.5228 [hep-lat] .
- M. Lüscher and S. Schaefer, Lattice QCD without topology barriers, JHEP 07, 036, arXiv:1105.4749 [hep-lat] .
- M. Lüscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun. Math. Phys. 293, 899 (2010), arXiv:0907.5491 [hep-lat] .
- M. S. Albergo, G. Kanwar, and P. E. Shanahan, Flow-based generative models for Markov chain Monte Carlo in lattice field theory, Phys. Rev. D 100, 034515 (2019), arXiv:1904.12072 [hep-lat] .
- R. Abbott et al., Normalizing flows for lattice gauge theory in arbitrary space-time dimension, (2023), arXiv:2305.02402 [hep-lat] .
- K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 1. Principles and φ4superscript𝜑4\varphi^{4}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT Theory, Nucl. Phys. B 226, 187 (1983a).
- K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 2. O(N) Nonlinear Sigma Model in Perturbation Theory, Nucl. Phys. B 226, 205 (1983b).
- M. Lüscher and P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun. Math. Phys. 97, 59 (1985a), [Erratum: Commun.Math.Phys. 98, 433 (1985)].
- M. Lüscher and P. Weisz, Computation of the Action for On-Shell Improved Lattice Gauge Theories at Weak Coupling, Phys. Lett. B 158, 250 (1985b).
- P. Hasenfratz and F. Niedermayer, Perfect lattice action for asymptotically free theories, Nucl. Phys. B 414, 785 (1994), arXiv:hep-lat/9308004 .
- W. Bietenholz and U. J. Wiese, Perfect lattice actions for quarks and gluons, Nucl. Phys. B 464, 319 (1996), arXiv:hep-lat/9510026 .
- M. Blatter and F. Niedermayer, New fixed point action for SU(3) lattice gauge theory, Nucl. Phys. B 482, 286 (1996), arXiv:hep-lat/9605017 .
- F. Niedermayer, P. Rüfenacht, and U. Wenger, Fixed point gauge actions with fat links: Scaling and glueballs, Nucl. Phys. B 597, 413 (2001), arXiv:hep-lat/0007007 .
- C. Gattringer et al. (BGR, Bern-Graz-Regensburg), Quenched spectroscopy with fixed point and chirally improved fermions, Nucl. Phys. B 677, 3 (2004), arXiv:hep-lat/0307013 .
- P. Hasenfratz, K. J. Juge, and F. Niedermayer (Bern-Graz-Regensburg), New results on cut-off effects in spectroscopy with the fixed point action, JHEP 12, 030, arXiv:hep-lat/0411034 .
- A. Hasenfratz, P. Hasenfratz, and F. Niedermayer, Simulating full QCD with the fixed point action, Phys. Rev. D 72, 114508 (2005), arXiv:hep-lat/0506024 .
- K. G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture, Phys. Rev. B 4, 3174 (1971a).
- K. G. Wilson, Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior, Phys. Rev. B 4, 3184 (1971b).
- Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, nature 521, 436 (2015).
- M. Feickert and B. Nachman, A Living Review of Machine Learning for Particle Physics, (2021), arXiv:2102.02770 [hep-ph] .
- D. Boyda et al., Applications of Machine Learning to Lattice Quantum Field Theory, in Snowmass 2021 (2022) arXiv:2202.05838 [hep-lat] .
- P. Shanahan et al., Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning, (2022), arXiv:2209.07559 [physics.comp-ph] .
- D. Bachtis, G. Aarts, and B. Lucini, Mapping distinct phase transitions to a neural network, Phys. Rev. E 102, 053306 (2020), arXiv:2007.00355 [cond-mat.stat-mech] .
- C. Lehner and T. Wettig, Gauge-equivariant neural networks as preconditioners in lattice QCD, Phys. Rev. D 108, 034503 (2023a), arXiv:2302.05419 [hep-lat] .
- C. Lehner and T. Wettig, Gauge-equivariant pooling layers for preconditioners in lattice QCD, (2023b), arXiv:2304.10438 [hep-lat] .
- L. Wang, G. Aarts, and K. Zhou, Diffusion Models as Stochastic Quantization in Lattice Field Theory, (2023), arXiv:2309.17082 [hep-lat] .
- G. Kanwar, Flow-based sampling for lattice field theories, in 40th International Symposium on Lattice Field Theory (2024) arXiv:2401.01297 [hep-lat] .
- J. Aronsson, D. I. Müller, and D. Schuh, Geometrical aspects of lattice gauge equivariant convolutional neural networks, (2023), arXiv:2303.11448 [hep-lat] .
- G. Parisi and Y.-s. Wu, Perturbation Theory Without Gauge Fixing, Sci. Sin. 24, 483 (1981).
- A. Ukawa and M. Fukugita, Langevin Simulation Including Dynamical Quark Loops, Phys. Rev. Lett. 55, 1854 (1985).
- P. H. Damgaard and H. Huffel, Stochastic Quantization, Phys. Rept. 152, 227 (1987).
- P. H. Ginsparg and K. G. Wilson, A Remnant of Chiral Symmetry on the Lattice, Phys. Rev. D 25, 2649 (1982).
- P. Hasenfratz, Prospects for perfect actions, Nucl. Phys. B Proc. Suppl. 63, 53 (1998a), arXiv:hep-lat/9709110 .
- P. Hasenfratz, V. Laliena, and F. Niedermayer, The Index theorem in QCD with a finite cutoff, Phys. Lett. B 427, 125 (1998), arXiv:hep-lat/9801021 .
- F. Niedermayer, Exact chiral symmetry, topological charge and related topics, Nucl. Phys. B Proc. Suppl. 73, 105 (1999), arXiv:hep-lat/9810026 .
- P. Hasenfratz, Lattice QCD without tuning, mixing and current renormalization, Nucl. Phys. B 525, 401 (1998b), arXiv:hep-lat/9802007 .
- M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett. B 428, 342 (1998), arXiv:hep-lat/9802011 .