Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chiral susceptibility and axial U(1) anomaly near the (pseudo-)critical temperature (2401.06459v2)

Published 12 Jan 2024 in hep-lat

Abstract: We investigate relations between the chiral susceptibility and axial $U(1)$ anomaly in lattice QCD at high temperatures. Employing the exactly chiral symmetric Dirac operator, we separate the purely axial $U(1)$ breaking effect in the connected and disconnected chiral susceptibilites in a theoretically clean manner. Preliminary results for two-flavor lattice QCD near the critical temperature are presented.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro and F. Sanfilippo, “Curvature of the chiral pseudocritical line in QCD: Continuum extrapolated results,” Phys. Rev. D 92, no.5, 054503 (2015) doi:10.1103/PhysRevD.92.054503.
  2. B. B. Brandt, A. Francis, H. B. Meyer, O. Philipsen, D. Robaina and H. Wittig, “On the strength of the UA⁢(1)subscript𝑈𝐴1U_{A}(1)italic_U start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ( 1 ) anomaly at the chiral phase transition in Nf=2subscript𝑁𝑓2N_{f}=2italic_N start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = 2 QCD,” JHEP 12, 158 (2016) doi:10.1007/JHEP12(2016)158 [arXiv:1608.06882 [hep-lat]].
  3. C. G. Callan, Jr., R. F. Dashen and D. J. Gross, “Toward a Theory of the Strong Interactions,” Phys. Rev. D 17, 2717 (1978) doi:10.1103/PhysRevD.17.2717
  4. D. Diakonov and V. Y. Petrov, “CHIRAL CONDENSATE IN THE INSTANTON VACUUM,” Phys. Lett. B 147, 351-356 (1984) doi:10.1016/0370-2693(84)90132-1
  5. H. Neuberger, “Exactly massless quarks on the lattice,” Phys. Lett. B 417, 141 (1998) doi:10.1016/S0370-2693(97)01368-3 [hep-lat/9707022].
  6. S. Aoki, H. Fukaya and Y. Taniguchi, “Chiral symmetry restoration, eigenvalue density of Dirac operator and axial U(1) anomaly at finite temperature,” Phys. Rev. D 86, 114512 (2012) doi:10.1103/PhysRevD.86.114512 [arXiv:1209.2061 [hep-lat]].
  7. A. Gómez Nicola and J. Ruiz De Elvira, “Chiral and U⁢(1)A𝑈subscript1𝐴U(1)_{A}italic_U ( 1 ) start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT restoration for the scalar and pseudoscalar meson nonets,” Phys. Rev. D 98, no.1, 014020 (2018) doi:10.1103/PhysRevD.98.014020 [arXiv:1803.08517 [hep-ph]].
  8. R. C. Brower, H. Neff and K. Orginos, “Mobius fermions,” Nucl. Phys. Proc. Suppl.  153, 191 (2006) doi:10.1016/j.nuclphysbps.2006.01.047 [hep-lat/0511031]; “The Möbius domain wall fermion algorithm,” Comput. Phys. Commun.  220, 1 (2017) doi:10.1016/j.cpc.2017.01.024 [arXiv:1206.5214 [hep-lat]].
  9. R. D. Pisarski and F. Wilczek, “Remarks on the Chiral Phase Transition in Chromodynamics,” Phys. Rev. D 29, 338 (1984) doi:10.1103/PhysRevD.29.338.
  10. P. Boyle, A. Yamaguchi, G. Cossu and A. Portelli, “Grid: A next generation data parallel C++ QCD library,” doi:https://doi.org/10.22323/1.251.0023 [arXiv:1512.03487 [hep-lat]].
  11. S. Ueda, S. Aoki, T. Aoyama, K. Kanaya, H. Matsufuru, S. Motoki, Y. Namekawa, H. Nemura, Y. Taniguchi and N. Ukita, “Development of an object oriented lattice QCD code ’Bridge++’,” J. Phys. Conf. Ser. 523, 012046 (2014) doi:10.1088/1742-6596/523/1/012046
  12. N. Meyer, P. Georg, S. Solbrig and T. Wettig, “Grid on QPACE 4,” PoS LATTICE2021, 068 (2022) doi:10.22323/1.396.0068 [arXiv:2112.01852 [hep-lat]].
  13. Y. Akahoshi, S. Aoki, T. Aoyama, I. Kanamori, K. Kanaya, H. Matsufuru, Y. Namekawa, H. Nemura and Y. Taniguchi, “General purpose lattice QCD code set Bridge++ 2.0 for high performance computing,” J. Phys. Conf. Ser. 2207, no.1, 012053 (2022) doi:10.1088/1742-6596/2207/1/012053 [arXiv:2111.04457 [hep-lat]].
Citations (2)

Summary

We haven't generated a summary for this paper yet.