Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limits on the Primordial Black Holes Dark Matter with future MeV detectors (2401.06440v1)

Published 12 Jan 2024 in astro-ph.HE

Abstract: Primordial black holes (PBHs) are a compelling candidate for Dark Matter (DM). There remain significant parameter spaces to be explored despite current astrophysical observations have set strong limits. Utilizing advanced MeV observation instruments, we have statistically established the upper limit of Hawking radiation emitted by PBHs in DM-dense systems, such as galaxy clusters or dwarf galaxies. These results can set a stringent upper limit on the ratio of PBH to DM, expressed as $f_{\rm PBH}$. Our results highlight the efficacy of MeV observations in DM-dense environments. The constraints on $f_{\rm PBH}$ for PBHs in the mass range of $10{16}-10{17} ~\rm g$ can be improved significantly compared with the current observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. K. Pardo and D. N. Spergel, What is the price of abandoning dark matter? cosmological constraints on alternative gravity theories, Phys. Rev. Lett. 125, 211101 (2020).
  2. G. F. Chapline, Cosmological effects of primordial black holes, Nature 253, 251 (1975).
  3. J. Auffinger, Primordial black hole constraints with hawking radiation—a review, Progress in Particle and Nuclear Physics 131, 104040 (2023a).
  4. S. W. Hawking, Black hole explosions?, Nature 248, 30 (1974).
  5. S. W. Hawking, Particle creation by black holes, Communications in mathematical physics 43, 199 (1975).
  6. P. Villanueva-Domingo, O. Mena, and S. Palomares-Ruiz, A brief review on primordial black holes as dark matter, Frontiers in Astronomy and Space Sciences 8, 10.3389/fspas.2021.681084 (2021).
  7. A. Coogan, L. Morrison, and S. Profumo, Direct detection of hawking radiation from asteroid-mass primordial black holes, Physical Review Letters 126, 171101 (2021).
  8. A. C. Edge, G. C. Stewart, and A. C. Fabian, Properties of cooling flows in a flux-limited sample of clusters of galaxies, Monthly Notices of the Royal Astronomical Society 258, 177 (1992), https://academic.oup.com/mnras/article-pdf/258/1/177/2897397/mnras258-0177.pdf .
  9. E. L. Lokas, G. A. Mamon, and F. Prada, Dark matter distribution in the draco dwarf from velocity moments, Monthly Notices of the Royal Astronomical Society 363, 918 (2005).
  10. S. Hawking, Gravitationally collapsed objects of very low mass, Monthly Notices of the Royal Astronomical Society 152, 75 (1971).
  11. H. M. Hodges and G. R. Blumenthal, Arbitrariness of inflationary fluctuation spectra, Physical Review D 42, 3329 (1990).
  12. B. Carr, F. Kühnel, and M. Sandstad, Primordial black holes as dark matter, Phys. Rev. D 94, 083504 (2016).
  13. B. Kavanagh, bradkav/pbhbounds: Release version (2019).
  14. K. Griest, A. M. Cieplak, and M. J. Lehner, Experimental limits on primordial black hole dark matter from the first 2 yr of kepler data, The Astrophysical Journal 786, 158 (2014).
  15. Z.-C. Chen and Q.-G. Huang, Distinguishing primordial black holes from astrophysical black holes by einstein telescope and cosmic explorer, Journal of Cosmology and Astroparticle Physics 2020 (08), 039.
  16. D. N. Page, Particle emission rates from a black hole. ii. massless particles from a rotating hole, Physical Review D 14, 3260 (1976a).
  17. D. N. Page, Particle emission rates from a black hole. ii. massless particles from a rotating hole, Physical Review D 14, 3260 (1976b).
  18. D. N. Page, Particle emission rates from a black hole. iii. charged leptons from a nonrotating hole, Physical Review D 16, 2402 (1977).
  19. J. H. MacGibbon and B. R. Webber, Quark- and gluon-jet emission from primordial black holes: The instantaneous spectra, Phys. Rev. D 41, 3052 (1990).
  20. R. Laha, Primordial black holes as a dark matter candidate are severely constrained by the galactic center 511 kev γ𝛾\gammaitalic_γ-ray line, Phys. Rev. Lett. 123, 251101 (2019).
  21. W. DeRocco and P. W. Graham, Constraining primordial black hole abundance with the galactic 511 kev line, Physical Review Letters 123, 251102 (2019).
  22. B. Dasgupta, R. Laha, and A. Ray, Neutrino and positron constraints on spinning primordial black hole dark matter, Physical Review Letters 125, 101101 (2020).
  23. S. K. Acharya and R. Khatri, Cmb and bbn constraints on evaporating primordial black holes revisited, Journal of Cosmology and Astroparticle Physics 2020 (06), 018.
  24. A. K. Saha and R. Laha, Sensitivities on nonspinning and spinning primordial black hole dark matter with global 21-cm troughs, Phys. Rev. D 105, 103026 (2022a).
  25. D. Malyshev, E. Moulin, and A. Santangelo, Search for primordial black hole dark matter with x-ray spectroscopic and imaging satellite experiments and prospects for future satellite missions, Physical Review D 106, 123020 (2022).
  26. A. Arbey and J. Auffinger, Blackhawk: A public code for calculating the hawking evaporation spectra of any black hole distribution, The European Physical Journal C 79, 1 (2019).
  27. A. Arbey and J. Auffinger, Physics beyond the standard model with blackhawk v2. 0, The European Physical Journal C 81, 1 (2021).
  28. J. I. Read, M. Walker, and P. Steger, Dark matter heats up in dwarf galaxies, Monthly Notices of the Royal Astronomical Society 484, 1401 (2019).
  29. Zhang et al., Megat: a high resolution mev gamma telescope using tpc and czt detectors, private communication  (2023).
  30. T. F.-L. collaboration, Galactic interstellar emission model for the 4fgl catalog analysis, open document  (2019).
  31. A. Dolgov and J. Silk, Baryon isocurvature fluctuations at small scales and baryonic dark matter, Phys. Rev. D 47, 4244 (1993).
  32. A. K. Saha and R. Laha, Sensitivities on nonspinning and spinning primordial black hole dark matter with global 21-cm troughs, Physical Review D 105, 103026 (2022b).
  33. J. Auffinger, Primordial black hole constraints with hawking radiation—a review, Progress in Particle and Nuclear Physics , 104040 (2023b).
  34. D. Malyshev, E. Moulin, and A. Santangelo, Limits on the primordial black holes dark matter with current and future missions, arXiv preprint arXiv:2311.05942  (2023).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com