Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal random matrices with independent entries and matrix superconcentration inequalities (2401.06284v2)

Published 11 Jan 2024 in math.PR

Abstract: We prove nonasymptotic matrix concentration inequalities for the spectral norm of (sub)gaussian random matrices with centered independent entries that capture fluctuations at the Tracy-Widom scale. This considerably improves previous bounds in this setting due to Bandeira and Van Handel, and establishes the best possible tail behavior for random matrices with an arbitrary variance pattern. These bounds arise from an extremum problem for nonhomogeneous random matrices: among all variance patterns with a given sparsity parameter, the moments of the random matrix are maximized by block-diagonal matrices with i.i.d. entries in each block. As part of the proof, we obtain sharp bounds on large moments of Gaussian Wishart matrices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Matrix concentration inequalities and free probability. Invent. Math., 234(1):419–487, 2023.
  2. In preparation.
  3. Sharp nonasymptotic bounds on the norm of random matrices with independent entries. Ann. Probab., 44(4):2479–2506, 2016.
  4. Spectral radii of sparse random matrices. Ann. Inst. Henri Poincaré Probab. Stat., 56(3):2141–2161, 2020.
  5. T. Brailovskaya and R. van Handel. Universality and sharp matrix concentration inequalities, 2023. Preprint arxiv:2201.05142v2.
  6. S. Chatterjee. Superconcentration and related topics. Springer Monographs in Mathematics. Springer, Cham, 2014.
  7. Large-N𝑁Nitalic_N expansion for the time-delay matrix of ballistic chaotic cavities. J. Math. Phys., 57(11):111901, 16, 2016.
  8. Local operator theory, random matrices and Banach spaces. In Handbook of the geometry of Banach spaces, Vol. I, pages 317–366. North-Holland, Amsterdam, 2001.
  9. L. Erdős and A. Knowles. Quantum diffusion and delocalization for band matrices with general distribution. Ann. Henri Poincaré, 12(7):1227–1319, 2011.
  10. U. Haagerup and S. Thorbjørnsen. Random matrices with complex Gaussian entries. Expo. Math., 21(4):293–337, 2003.
  11. I. M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist., 29(2):295–327, 2001.
  12. The dimension-free structure of nonhomogeneous random matrices. Invent. Math., 214(3):1031–1080, 2018.
  13. M. Ledoux. The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.
  14. M. Ledoux. Differential operators and spectral distributions of invariant ensembles from the classical orthogonal polynomials. The continuous case. Electron. J. Probab., 9:no. 7, 177–208, 2004.
  15. M. Ledoux. Deviation inequalities on largest eigenvalues. In Geometric aspects of functional analysis, volume 1910 of Lecture Notes in Math., pages 167–219. Springer, Berlin, 2007.
  16. M. Ledoux. A recursion formula for the moments of the Gaussian orthogonal ensemble. Ann. Inst. Henri Poincaré Probab. Stat., 45(3):754–769, 2009.
  17. M. Ledoux and M. Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991. Isoperimetry and processes.
  18. A. Nica and R. Speicher. Lectures on the combinatorics of free probability, volume 335 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2006.
  19. D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica, 17(4):1617–1642, 2007.
  20. N. S. Pillai and J. Yin. Universality of covariance matrices. Ann. Appl. Probab., 24(3):935–1001, 2014.
  21. S. Sodin. The spectral edge of some random band matrices. Ann. of Math. (2), 172(3):2223–2251, 2010.
  22. J. A. Tropp. Second-order matrix concentration inequalities. Appl. Comput. Harmon. Anal., 44(3):700–736, 2018.
  23. H. S. Wilf. generatingfunctionology. A K Peters, Ltd., Wellesley, MA, third edition, 2006.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com