Constraining dark energy with the integrated Sachs-Wolfe effect (2401.06221v2)
Abstract: We use the integrated Sachs-Wolfe (ISW) effect, by now detectable at $\sim 5\sigma$ within the context of $\Lambda{}$CDM cosmologies, to place strong constraints on dynamical dark energy theories. Working within an effective field theory framework for dark energy we find that including ISW constraints from galaxy-CMB cross-correlations significantly strengthens existing large-scale structure constraints, yielding bounds consistent with $\Lambda{}$CDM and approximately reducing the viable parameter space by $\sim 70\%$. This is a direct consequence of ${\cal O}(1)$ changes induced in these cross-correlations by otherwise viable dark energy models, which we discuss in detail. We compute constraints by adapting the $\Lambda{}$CDM ISW likelihood from [1] for dynamical dark energy models using galaxy data from 2MASS, WISE $\times$ SuperCOSMOS, SDSS-DR12, QSOs and NVSS, CMB data from Planck 18, and BAO and RSD large scale structure measurements from BOSS and 6dF. We show constraints both in terms of EFT-inspired $\alpha_i$ and phenomenological $\mu/\Sigma$ parametrisations. Furthermore we discuss the approximations involved and related aspects of bias modelling in detail and highlight what these constraints imply for the underlying dark energy theories.
- B. Stölzner, A. Cuoco, J. Lesgourgues, and M. Bilicki, “Updated tomographic analysis of the integrated Sachs-Wolfe effect and implications for dark energy,” Phys. Rev. D 97 (2018) no. 6, 063506, arXiv:1710.03238 [astro-ph.CO].
- G. Gubitosi, F. Piazza, and F. Vernizzi, “The Effective Field Theory of Dark Energy,” JCAP 1302 (2013) 032, arXiv:1210.0201 [hep-th]. [JCAP1302,032(2013)].
- J. K. Bloomfield, E. E. Flanagan, M. Park, and S. Watson, “Dark energy or modified gravity? An effective field theory approach,” JCAP 1308 (2013) 010, arXiv:1211.7054 [astro-ph.CO].
- J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Essential Building Blocks of Dark Energy,” JCAP 08 (2013) 025, arXiv:1304.4840 [hep-th].
- J. Gleyzes, D. Langlois, and F. Vernizzi, “A unifying description of dark energy,” Int. J. Mod. Phys. D23 (2015) no. 13, 1443010, arXiv:1411.3712 [hep-th].
- E. Bellini and I. Sawicki, “Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity,” JCAP 1407 (2014) 050, arXiv:1404.3713 [astro-ph.CO].
- M. Lagos, T. Baker, P. G. Ferreira, and J. Noller, “A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories,” JCAP 1608 (2016) no. 08, 007, arXiv:1604.01396 [gr-qc].
- M. Lagos, E. Bellini, J. Noller, P. G. Ferreira, and T. Baker, “A general theory of linear cosmological perturbations: stability conditions, the quasistatic limit and dynamics,” JCAP 1803 (2018) no. 03, 021, arXiv:1711.09893 [gr-qc].
- T. Kobayashi, M. Yamaguchi, and J. Yokoyama, “Generalized G-inflation: Inflation with the most general second-order field equations,” Prog. Theor. Phys. 126 (2011) 511–529, arXiv:1105.5723 [hep-th].
- J. Noller and A. Nicola, “Cosmological parameter constraints for Horndeski scalar-tensor gravity,” Phys. Rev. D 99 (2019) no. 10, 103502, arXiv:1811.12928 [astro-ph.CO].
- E. Bellini, A. J. Cuesta, R. Jimenez, and L. Verde, “Constraints on deviations from ΛΛ\Lambdaroman_ΛCDM within Horndeski gravity,” JCAP 02 (2016) 053, arXiv:1509.07816 [astro-ph.CO]. [Erratum: JCAP 06, E01 (2016)].
- B. Hu, M. Raveri, N. Frusciante, and A. Silvestri, “Effective Field Theory of Cosmic Acceleration: an implementation in CAMB,” Phys. Rev. D89 (2014) no. 10, 103530, arXiv:1312.5742 [astro-ph.CO].
- M. Raveri, B. Hu, N. Frusciante, and A. Silvestri, “Effective Field Theory of Cosmic Acceleration: constraining dark energy with CMB data,” Phys. Rev. D90 (2014) no. 4, 043513, arXiv:1405.1022 [astro-ph.CO].
- J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi, “Effective Theory of Dark Energy at Redshift Survey Scales,” JCAP 1602 (2016) no. 02, 056, arXiv:1509.02191 [astro-ph.CO].
- C. D. Kreisch and E. Komatsu, “Cosmological Constraints on Horndeski Gravity in Light of GW170817,” arXiv:1712.02710 [astro-ph.CO].
- M. Zumalacárregui, E. Bellini, I. Sawicki, J. Lesgourgues, and P. G. Ferreira, “hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System,” JCAP 1708 (2017) no. 08, 019, arXiv:1605.06102 [astro-ph.CO].
- D. Alonso, E. Bellini, P. G. Ferreira, and M. Zumalacárregui, “Observational future of cosmological scalar-tensor theories,” Phys. Rev. D95 (2017) no. 6, 063502, arXiv:1610.09290 [astro-ph.CO].
- S. Arai and A. Nishizawa, “Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory,” Phys. Rev. D97 (2018) no. 10, 104038, arXiv:1711.03776 [gr-qc].
- N. Frusciante, S. Peirone, S. Casas, and N. A. Lima, “The road ahead of Horndeski: cosmology of surviving scalar-tensor theories,” arXiv:1810.10521 [astro-ph.CO].
- R. Reischke, A. S. Mancini, B. M. Schafer, and P. M. Merkel, “Investigating scalar-tensor-gravity with statistics of the cosmic large-scale structure,” arXiv:1804.02441 [astro-ph.CO].
- A. Spurio Mancini, R. Reischke, V. Pettorino, B. M. Schafer, and M. Zumalacárregui, “Testing (modified) gravity with 3D and tomographic cosmic shear,” Mon. Not. Roy. Astron. Soc. 480 (2018) 3725, arXiv:1801.04251 [astro-ph.CO].
- G. Brando, F. T. Falciano, E. V. Linder, and H. E. S. Velten, “Modified gravity away from a ΛΛ\Lambdaroman_ΛCDM background,” JCAP 11 (2019) 018, arXiv:1904.12903 [astro-ph.CO].
- R. Arjona, W. Cardona, and S. Nesseris, “Designing Horndeski and the effective fluid approach,” Phys. Rev. D 100 (2019) no. 6, 063526, arXiv:1904.06294 [astro-ph.CO].
- M. Raveri, “Reconstructing Gravity on Cosmological Scales,” Phys. Rev. D 101 (2020) no. 8, 083524, arXiv:1902.01366 [astro-ph.CO].
- L. Perenon, J. Bel, R. Maartens, and A. de la Cruz-Dombriz, “Optimising growth of structure constraints on modified gravity,” JCAP 06 (2019) 020, arXiv:1901.11063 [astro-ph.CO].
- N. Frusciante and L. Perenon, “Effective field theory of dark energy: A review,” Phys. Rept. 857 (2020) 1–63, arXiv:1907.03150 [astro-ph.CO].
- A. Spurio Mancini, F. Köhlinger, B. Joachimi, V. Pettorino, B. M. Schäfer, R. Reischke, E. van Uitert, S. Brieden, M. Archidiacono, and J. Lesgourgues, “KiDS + GAMA: constraints on horndeski gravity from combined large-scale structure probes,” Mon. Not. Roy. Astron. Soc. 490 (2019) no. 2, 2155–2177, arXiv:1901.03686 [astro-ph.CO].
- A. Bonilla, R. D’Agostino, R. C. Nunes, and J. C. N. de Araujo, “Forecasts on the speed of gravitational waves at high z𝑧zitalic_z,” JCAP 03 (2020) 015, arXiv:1910.05631 [gr-qc].
- T. Baker and I. Harrison, “Constraining Scalar-Tensor Modified Gravity with Gravitational Waves and Large Scale Structure Surveys,” JCAP 01 (2021) 068, arXiv:2007.13791 [astro-ph.CO].
- S. Joudaki, P. G. Ferreira, N. A. Lima, and H. A. Winther, “Testing Gravity on Cosmic Scales: A Case Study of Jordan-Brans-Dicke Theory,” arXiv:2010.15278 [astro-ph.CO].
- J. Noller, L. Santoni, E. Trincherini, and L. G. Trombetta, “Scalar-tensor cosmologies without screening,” JCAP 01 (2021) 045, arXiv:2008.08649 [astro-ph.CO].
- J. Noller, “Cosmological constraints on dark energy in light of gravitational wave bounds,” Phys. Rev. D 101 (2020) no. 6, 063524, arXiv:2001.05469 [astro-ph.CO].
- R. Gsponer and J. Noller, “Tachyonic stability priors for dark energy,” Phys. Rev. D 105 (2022) no. 6, 064002, arXiv:2107.01044 [astro-ph.CO].
- R. Kimura, T. Kobayashi, and K. Yamamoto, “Observational Constraints on Kinetic Gravity Braiding from the Integrated Sachs-Wolfe Effect,” Phys. Rev. D 85 (2012) 123503, arXiv:1110.3598 [astro-ph.CO].
- J. Renk, M. Zumalacárregui, F. Montanari, and A. Barreira, “Galileon gravity in light of ISW, CMB, BAO and H00{}_{0}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT data,” JCAP 1710 (2017) no. 10, 020, arXiv:1707.02263 [astro-ph.CO].
- J. A. Kable, G. Benevento, N. Frusciante, A. De Felice, and S. Tsujikawa, “Probing modified gravity with integrated Sachs-Wolfe CMB and galaxy cross-correlations,” JCAP 09 (2022) 002, arXiv:2111.10432 [astro-ph.CO].
- G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys. 10 (1974) 363–384.
- C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, “From k-essence to generalised Galileons,” Phys. Rev. D84 (2011) 064039, arXiv:1103.3260 [hep-th].
- A. G. et. al., “An ordinary short gamma-ray burst with extraordinary implications: Fermi -gbm detection of grb 170817a,” The Astrophysical Journal Letters 848 (2017) no. 2, L14. http://stacks.iop.org/2041-8205/848/i=2/a=L14.
- V. S. et. al., “Integral detection of the first prompt gamma-ray signal coincident with the gravitational-wave event gw170817,” The Astrophysical Journal Letters 848 (2017) no. 2, L15. http://stacks.iop.org/2041-8205/848/i=2/a=L15.
- B. P. A. et. al., “Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a,” The Astrophysical Journal Letters 848 (2017) no. 2, L13. http://stacks.iop.org/2041-8205/848/i=2/a=L13.
- B. P. A. et. al., “Multi-messenger observations of a binary neutron star merger,” The Astrophysical Journal Letters 848 (2017) no. 2, L12. http://stacks.iop.org/2041-8205/848/i=2/a=L12.
- J. Beltran Jimenez, F. Piazza, and H. Velten, “Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars,” Phys. Rev. Lett. 116 (2016) no. 6, 061101, arXiv:1507.05047 [gr-qc].
- P. Creminelli and F. Vernizzi, “Dark Energy after GW170817 and GRB170817A,” Phys. Rev. Lett. 119 (2017) no. 25, 251302, arXiv:1710.05877 [astro-ph.CO].
- J. Sakstein and B. Jain, “Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories,” Phys. Rev. Lett. 119 (2017) no. 25, 251303, arXiv:1710.05893 [astro-ph.CO].
- J. M. Ezquiaga and M. Zumalacárregui, “Dark Energy After GW170817: Dead Ends and the Road Ahead,” Phys. Rev. Lett. 119 (2017) no. 25, 251304, arXiv:1710.05901 [astro-ph.CO].
- T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and I. Sawicki, “Strong constraints on cosmological gravity from GW170817 and GRB 170817A,” Phys. Rev. Lett. 119 (2017) no. 25, 251301, arXiv:1710.06394 [astro-ph.CO].
- C. de Rham and S. Melville, “Gravitational Rainbows: LIGO and Dark Energy at its Cutoff,” Phys. Rev. Lett. 121 (2018) no. 22, 221101, arXiv:1806.09417 [hep-th].
- T. Baker, E. Barausse, A. Chen, C. de Rham, M. Pieroni, and G. Tasinato, “Testing gravitational wave propagation with multiband detections,” JCAP 03 (2023) 044, arXiv:2209.14398 [gr-qc].
- I. Harry and J. Noller, “Probing the speed of gravity with LVK, LISA, and joint observations,” Gen. Rel. Grav. 54 (2022) no. 10, 133, arXiv:2207.10096 [gr-qc].
- E. V. Linder, G. Sengör, and S. Watson, “Is the Effective Field Theory of Dark Energy Effective?,” JCAP 1605 (2016) no. 05, 053, arXiv:1512.06180 [astro-ph.CO].
- E. V. Linder, “Challenges in connecting modified gravity theory and observations,” Phys. Rev. D95 (2017) no. 2, 023518, arXiv:1607.03113 [astro-ph.CO].
- M. Denissenya and E. V. Linder, “Gravity’s Islands: Parametrizing Horndeski Stability,” JCAP 1811 (2018) no. 11, 010, arXiv:1808.00013 [astro-ph.CO].
- L. Lombriser, C. Dalang, J. Kennedy, and A. Taylor, “Inherently stable effective field theory for dark energy and modified gravity,” JCAP 1901 (2019) no. 01, 041, arXiv:1810.05225 [astro-ph.CO].
- J. Gleyzes, “Parametrizing modified gravity for cosmological surveys,” Phys. Rev. D96 (2017) no. 6, 063516, arXiv:1705.04714 [astro-ph.CO].
- D. Traykova, E. Bellini, P. G. Ferreira, C. García-García, J. Noller, and M. Zumalacárregui, “Theoretical priors in scalar-tensor cosmologies: Shift-symmetric Horndeski models,” arXiv:2103.11195 [astro-ph.CO].
- I. Sawicki and E. Bellini, “Limits of quasistatic approximation in modified-gravity cosmologies,” Phys. Rev. D92 (2015) no. 8, 084061, arXiv:1503.06831 [astro-ph.CO].
- A. de la Cruz-Dombriz, A. Dobado, and A. L. Maroto, “On the evolution of density perturbations in f(R) theories of gravity,” Phys. Rev. D 77 (2008) 123515, arXiv:0802.2999 [astro-ph].
- J. Noller, F. von Braun-Bates, and P. G. Ferreira, “Relativistic scalar fields and the quasistatic approximation in theories of modified gravity,” Phys. Rev. D 89 (2014) no. 2, 023521, arXiv:1310.3266 [astro-ph.CO].
- D. Blas, J. Lesgourgues, and T. Tram, “The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes,” JCAP 1107 (2011) 034, arXiv:1104.2933 [astro-ph.CO].
- R. Beck, L. Dobos, T. Budavari, A. S. Szalay, and I. Csabai, “Photometric redshifts for the sdss data release 12,” Monthly Notices of the Royal Astronomical Society 460 (2016) no. 2, 1371–1381. https://doi.org/10.1093%2Fmnras%2Fstw1009.
- K. M. Huffenberger, U. Seljak, and A. Makarov, “Sunyaev-Zeldovich effect in WMAP and its effect on cosmological parameters,” Phys. Rev. D 70 (2004) 063002, arXiv:astro-ph/0404545.
- N. Afshordi, Y.-S. Loh, and M. A. Strauss, “Cross - correlation of the Cosmic Microwave Background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources,” Phys. Rev. D 69 (2004) 083524, arXiv:astro-ph/0308260.
- S. Boughn and R. Crittenden, “A Correlation of the cosmic microwave sky with large scale structure,” Nature 427 (2004) 45–47, arXiv:astro-ph/0305001.
- P. Fosalba, E. Gaztanaga, and F. Castander, “Detection of the ISW and SZ effects from the CMB-galaxy correlation,” Astrophys. J. Lett. 597 (2003) L89–92, arXiv:astro-ph/0307249.
- P. Vielva, E. Martinez-Gonzalez, and M. Tucci, “WMAP and NVSS cross-correlation in wavelet space: ISW detection and dark energy constraints,” Mon. Not. Roy. Astron. Soc. 365 (2006) 891, arXiv:astro-ph/0408252.
- A. Cabre, P. Fosalba, E. Gaztanaga, and M. Manera, “Error analysis in cross-correlation of sky maps: Application to the ISW detection,” Mon. Not. Roy. Astron. Soc. 381 (2007) 1347, arXiv:astro-ph/0701393.
- A. Cabre, E. Gaztanaga, M. Manera, P. Fosalba, and F. Castander, “Cross-correlation of wmap 3rd year and the sdss dr4 galaxy survey: new evidence for dark energy,” Mon. Not. Roy. Astron. Soc. 372 (2006) L23–L27, arXiv:astro-ph/0603690.
- T. Giannantonio, R. G. Crittenden, R. C. Nichol, R. Scranton, G. T. Richards, A. D. Myers, R. J. Brunner, A. G. Gray, A. J. Connolly, and D. P. Schneider, “A high redshift detection of the integrated Sachs-Wolfe effect,” Phys. Rev. D 74 (2006) 063520, arXiv:astro-ph/0607572.
- D. Pietrobon, A. Balbi, and D. Marinucci, “Integrated Sachs-Wolfe effect from the cross-correlation of WMAP 3 year and NVSS: new results and constraints on dark energy,” Phys. Rev. D 74 (2006) 043524, arXiv:astro-ph/0606475.
- J. D. McEwen, P. Vielva, M. P. Hobson, E. Martinez-Gonzalez, and A. N. Lasenby, “Detection of the integrated Sachs–Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets,” Mon. Not. Roy. Astron. Soc. 376 (2007) 1211–1226, arXiv:astro-ph/0602398.
- A. Raccanelli, A. Bonaldi, M. Negrello, S. Matarrese, G. Tormen, and G. De Zotti, “A reassessment of the evidence of the Integrated Sachs-Wolfe effect through the WMAP-NVSS correlation,” Mon. Not. Roy. Astron. Soc. 386 (2008) 2161–2166, arXiv:0802.0084 [astro-ph].
- A. Rassat, K. Land, O. Lahav, and F. B. Abdalla, “Cross-correlation of 2MASS and WMAP3: Implications for the Integrated Sachs-Wolfe effect,” Mon. Not. Roy. Astron. Soc. 377 (2007) 1085–1094, arXiv:astro-ph/0610911.
- S. Ho, C. Hirata, N. Padmanabhan, U. Seljak, and N. Bahcall, “Correlation of CMB with large-scale structure: I. ISW Tomography and Cosmological Implications,” Phys. Rev. D 78 (2008) 043519, arXiv:0801.0642 [astro-ph].
- J.-Q. Xia, M. Viel, C. Baccigalupi, and S. Matarrese, “The High Redshift Integrated Sachs-Wolfe Effect,” JCAP 09 (2009) 003, arXiv:0907.4753 [astro-ph.CO].
- F. X. Dupe, A. Rassat, J. L. Starck, and M. J. Fadili, “Measuring the Integrated Sachs-Wolfe Effect,” Astron. Astrophys. 534 (2011) A51, arXiv:1010.2192 [astro-ph.CO].
- S. Ferraro, B. D. Sherwin, and D. N. Spergel, “WISE measurement of the integrated Sachs-Wolfe effect,” Phys. Rev. D 91 (2015) no. 8, 083533, arXiv:1401.1193 [astro-ph.CO].
- A. J. Shajib and E. L. Wright, “Measurement of the integrated Sachs-Wolfe effect using the AllWISE data release,” Astrophys. J. 827 (2016) no. 2, 116, arXiv:1604.03939 [astro-ph.CO].
- T. Giannantonio, R. Scranton, R. G. Crittenden, R. C. Nichol, S. P. Boughn, A. D. Myers, and G. T. Richards, “Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications,” Phys. Rev. D 77 (2008) 123520, arXiv:0801.4380 [astro-ph].
- T. Giannantonio, R. Crittenden, R. Nichol, and A. J. Ross, “The significance of the integrated Sachs-Wolfe effect revisited,” Mon. Not. Roy. Astron. Soc. 426 (2012) 2581–2599, arXiv:1209.2125 [astro-ph.CO].
- H. S. Xavier, M. V. Costa-Duarte, A. Balaguera-Antolínez, and M. Bilicki, “All-sky angular power spectra from cleaned WISE×SuperCOSMOS galaxy number counts,” JCAP 08 (2019) 037, arXiv:1812.08182 [astro-ph.CO].
- F. Calore, A. Cuoco, T. Regimbau, S. Sachdev, and P. D. Serpico, “Cross-correlating galaxy catalogs and gravitational waves: a tomographic approach,” Phys. Rev. Res. 2 (2020) 023314, arXiv:2002.02466 [astro-ph.CO].
- A. Krolewski and S. Ferraro, “The Integrated Sachs Wolfe effect: unWISE and Planck constraints on dynamical dark energy,” JCAP 04 (2022) no. 04, 033, arXiv:2110.13959 [astro-ph.CO].
- A. Kovács, R. Beck, A. Smith, G. Rácz, I. Csabai, and I. Szapudi, “Evidence for a high-z ISW signal from supervoids in the distribution of eBOSS quasars,” Mon. Not. Roy. Astron. Soc. 513 (2022) no. 1, 15–26, arXiv:2107.13038 [astro-ph.CO].
- Q. Hang, S. Alam, Y.-C. Cai, and J. A. Peacock, “Stacked CMB lensing and ISW signals around superstructures in the DESI Legacy Survey,” Mon. Not. Roy. Astron. Soc. 507 (2021) no. 1, 510–523, arXiv:2105.11936 [astro-ph.CO].
- D. N. Limber, “The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II,” Astrophys. J. 119 (1954) 655.
- N. Kaiser, “Weak gravitational lensing of distant galaxies,” Astrophys. J. 388 (1992) 272.
- N. Kaiser, “Weak lensing and cosmology,” Astrophys. J. 498 (1998) 26, arXiv:astro-ph/9610120.
- M. LoVerde and N. Afshordi, “Extended Limber Approximation,” Phys. Rev. D 78 (2008) 123506, arXiv:0809.5112 [astro-ph].
- M. Bilicki, T. H. Jarrett, J. A. Peacock, M. E. Cluver, and L. Steward, “2MASS Photometric Redshift catalog: a comprehensive three-dimensional census of the whole sky,” Astrophys. J. Suppl. 210 (2014) 9, arXiv:1311.5246 [astro-ph.CO].
- G. T. Richards, A. D. Myers, A. G. Gray, R. N. Riegel, R. C. Nichol, R. J. Brunner, A. S. Szalay, D. P. Schneider, and S. F. Anderson, “Efficient Photometric Selection of Quasars from the Sloan Digital Sky Survey: II. ~1,000,000 Quasars from Data Release Six,” Astrophys. J. Suppl. 180 (2009) 67–83, arXiv:0809.3952 [astro-ph].
- J. J. Condon, W. D. Cotton, E. W. Greisen, Q. F. Yin, R. A. Perley, G. B. Taylor, and J. J. Broderick, “The NRAO VLA Sky survey,” Astron. J. 115 (1998) 1693–1716.
- A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, “The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z=0.15𝑧0.15z=0.15italic_z = 0.15,” Mon. Not. Roy. Astron. Soc. 449 (2015) no. 1, 835–847, arXiv:1409.3242 [astro-ph.CO].
- F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, G. B. Poole, L. Campbell, Q. Parker, W. Saunders, and F. Watson, “The 6dF Galaxy Survey: z≈0𝑧0z\approx 0italic_z ≈ 0 measurement of the growth rate and σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT,” Mon. Not. Roy. Astron. Soc. 423 (2012) 3430–3444, arXiv:1204.4725 [astro-ph.CO].
- J. Noller and A. Nicola, “Radiative stability and observational constraints on dark energy and modified gravity,” Phys. Rev. D 102 (2020) no. 10, 104045, arXiv:1811.03082 [astro-ph.CO].
- S. Arai, P. Karmakar, and A. Nishizawa, “Cosmological evolution of viable models in the generalized scalar-tensor theory,” Phys. Rev. D 102 (2020) no. 2, 024003, arXiv:1912.01768 [gr-qc].
- B. R. Scott, K. S. Karkare, and S. Bird, “A forecast for large-scale structure constraints on Horndeski gravity with CO line intensity mapping,” Mon. Not. Roy. Astron. Soc. 523 (2023) no. 4, 4895–4908, arXiv:2209.13029 [astro-ph.CO].
- U. Andrade, A. a. J. S. Capistrano, E. Di Valentino, and R. C. Nunes, “Exploring Modified Gravity: Constraints on the μ𝜇\muitalic_μ and ΣΣ\Sigmaroman_Σ Parametrization with WMAP, ACT, and SPT,” arXiv:2309.15781 [astro-ph.CO].
- Y. Wen, N.-M. Nguyen, and D. Huterer, “Sweeping Horndeski canvas: new growth-rate parameterization for modified-gravity theories,” JCAP 09 (2023) 028, arXiv:2304.07281 [astro-ph.CO].
- S. Castello, M. Mancarella, N. Grimm, D. S. Blanco, I. Tutusaus, and C. Bonvin, “Gravitational Redshift Constraints on the Effective Theory of Interacting Dark Energy,” arXiv:2311.14425 [astro-ph.CO].
- N. S. Sugiyama, D. Yamauchi, T. Kobayashi, T. Fujita, S. Arai, S. Hirano, S. Saito, F. Beutler, and H.-J. Seo, “New constraints on cosmological modified gravity theories from anisotropic three-point correlation functions of BOSS DR12 galaxies,” arXiv:2302.06808 [astro-ph.CO].
- A. Barreira, A. G. Sánchez, and F. Schmidt, “Validating estimates of the growth rate of structure with modified gravity simulations,” Phys. Rev. D 94 (2016) no. 8, 084022, arXiv:1605.03965 [astro-ph.CO].
- A. Taruya, K. Koyama, T. Hiramatsu, and A. Oka, “Beyond consistency test of gravity with redshift-space distortions at quasilinear scales,” Phys. Rev. D 89 (2014) no. 4, 043509, arXiv:1309.6783 [astro-ph.CO].
- N. Cruickshank and J. Noller, “Probing dark energy with redshift space distortions,” to appear .
- P. Creminelli, G. Tambalo, F. Vernizzi, and V. Yingcharoenrat, “Dark-Energy Instabilities induced by Gravitational Waves,” arXiv:1910.14035 [gr-qc].
- E. Babichev, C. Deffayet, and G. Esposito-Farese, “Constraints on Shift-Symmetric Scalar-Tensor Theories with a Vainshtein Mechanism from Bounds on the Time Variation of G,” Phys. Rev. Lett. 107 (2011) 251102, arXiv:1107.1569 [gr-qc].
- C. Burrage and J. Dombrowski, “Constraining the cosmological evolution of scalar-tensor theories with local measurements of the time variation of G,” JCAP 07 (2020) 060, arXiv:2004.14260 [astro-ph.CO].
- S. Melville and J. Noller, “Positivity in the Sky: Constraining dark energy and modified gravity from the UV,” Phys. Rev. D 101 (2020) no. 2, 021502, arXiv:1904.05874 [astro-ph.CO].
- J. Kennedy and L. Lombriser, “Positivity bounds on reconstructed Horndeski models,” Phys. Rev. D 102 (2020) no. 4, 044062, arXiv:2003.05318 [gr-qc].
- C. de Rham, S. Melville, and J. Noller, “Positivity bounds on dark energy: when matter matters,” JCAP 08 (2021) 018, arXiv:2103.06855 [astro-ph.CO].
- S. Melville and J. Noller, “Positivity bounds from multiple vacua and their cosmological consequences,” JCAP 06 (2022) no. 06, 031, arXiv:2202.01222 [hep-th].
- G. Cusin, M. Lewandowski, and F. Vernizzi, “Nonlinear Effective Theory of Dark Energy,” JCAP 04 (2018) 061, arXiv:1712.02782 [astro-ph.CO].
- G. Cusin, M. Lewandowski, and F. Vernizzi, “Dark Energy and Modified Gravity in the Effective Field Theory of Large-Scale Structure,” JCAP 04 (2018) 005, arXiv:1712.02783 [astro-ph.CO].
- D. B. Thomas, “Cosmological gravity on all scales: simple equations, required conditions, and a framework for modified gravity,” Phys. Rev. D 101 (2020) no. 12, 123517, arXiv:2004.13051 [gr-qc].
- S. Srinivasan, D. B. Thomas, F. Pace, and R. Battye, “Cosmological gravity on all scales. Part II. Model independent modified gravity N-body simulations,” JCAP 06 (2021) 016, arXiv:2103.05051 [astro-ph.CO].
- B. Fiorini, K. Koyama, and A. Izard, “Studying large-scale structure probes of modified gravity with COLA,” JCAP 12 (2022) 028, arXiv:2208.01345 [astro-ph.CO].
- G. Brando, B. Fiorini, K. Koyama, and H. A. Winther, “Enabling matter power spectrum emulation in beyond-ΛΛ\Lambdaroman_ΛCDM cosmologies with COLA,” JCAP 09 (2022) 051, arXiv:2203.11120 [astro-ph.CO].
- B. S. Wright, A. Sen Gupta, T. Baker, G. Valogiannis, and B. Fiorini, “Hi-COLA: fast, approximate simulations of structure formation in Horndeski gravity,” JCAP 03 (2023) 040, arXiv:2209.01666 [astro-ph.CO].
- B. Bose, M. Tsedrik, J. Kennedy, L. Lombriser, A. Pourtsidou, and A. Taylor, “Fast and accurate predictions of the nonlinear matter power spectrum for general models of Dark Energy and Modified Gravity,” arXiv:2210.01094 [astro-ph.CO].
- L. Heisenberg, J. Noller, and J. Zosso, “Horndeski under the quantum loupe,” JCAP 10 (2020) 010, arXiv:2004.11655 [hep-th].
- D. Foreman-Mackey, “corner.py: Scatterplot matrices in python,” The Journal of Open Source Software 24 (2016) . http://dx.doi.org/10.5281/zenodo.45906.
- E. Bellini, I. Sawicki, and M. Zumalacárregui, “hi_class: Background Evolution, Initial Conditions and Approximation Schemes,” JCAP 02 (2020) 008, arXiv:1909.01828 [astro-ph.CO].
- B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, “Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code,” JCAP 1302 (2013) 001, arXiv:1210.7183 [astro-ph.CO].
- T. Brinckmann and J. Lesgourgues, “MontePython 3: boosted MCMC sampler and other features,” arXiv:1804.07261 [astro-ph.CO].
- J. M. Martín-García, “xAct 2002-2014,” http://www.xact.es/ .
- A. Ijjas, “Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions,” JCAP 02 (2018) 007, arXiv:1710.05990 [gr-qc].