Computing parameter planes of iterative root-finding methods with several free critical points (2401.06207v1)
Abstract: In this paper we present an algorithm to obtain the parameter planes of families of root-finding methods with several free critical points. The parameter planes show the joint behaviour of all critical points. This algorithm avoids the inconsistencies arising from the relationship between the different critical points as well as the indeterminacy caused by the square roots involved in their computation. We analyse the suitability of this algorithm by drawing the parameter planes of different Newton-like methods with two and three critical points. We also present some results of the expressions of the Newton-like operators and their derivatives in terms of palindromic polynomials, and we show how to obtain the expression of the critical points of a Newton-like method with real coefficients.