Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Exploratory Assessment of LLM's Potential Toward Flight Trajectory Reconstruction Analysis (2401.06204v1)

Published 11 Jan 2024 in cs.LG, cs.AI, and eess.SP

Abstract: LLMs hold transformative potential in aviation, particularly in reconstructing flight trajectories. This paper investigates this potential, grounded in the notion that LLMs excel at processing sequential data and deciphering complex data structures. Utilizing the LLaMA 2 model, a pre-trained open-source LLM, the study focuses on reconstructing flight trajectories using Automatic Dependent Surveillance-Broadcast (ADS-B) data with irregularities inherent in real-world scenarios. The findings demonstrate the model's proficiency in filtering noise and estimating both linear and curved flight trajectories. However, the analysis also reveals challenges in managing longer data sequences, which may be attributed to the token length limitations of LLM models. The study's insights underscore the promise of LLMs in flight trajectory reconstruction and open new avenues for their broader application across the aviation and transportation sectors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang, J. Wang, S. Jin, E. Zhou et al., “The rise and potential of large language model based agents: A survey,” arXiv preprint arXiv:2309.07864, 2023.
  2. Q. Zhang, J. H. Mott, M. E. Johnson, and J. A. Springer, “Development of a reliable method for general aviation flight phase identification,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 11 729–11 738, 2021.
  3. FAA. (2020) Ads-b – frequently asked questions. [Online]. Available: https://www.faa.gov/nextgen/programs/adsb/faq/
  4. J. H. Mott and D. M. Bullock, “Estimation of aircraft operations at airports using mode-c signal strength information,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 3, pp. 677–686, 2017.
  5. Z. Shi, M. Xu, Q. Pan, B. Yan, and H. Zhang, “Lstm-based flight trajectory prediction,” in 2018 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2018, pp. 1–8.
  6. S. Hegselmann, A. Buendia, H. Lang, M. Agrawal, X. Jiang, and D. Sontag, “Tabllm: Few-shot classification of tabular data with large language models,” in International Conference on Artificial Intelligence and Statistics.   PMLR, 2023, pp. 5549–5581.
  7. N. Gruver, M. Finzi, S. Qiu, and A. G. Wilson, “Large language models are zero-shot time series forecasters,” arXiv preprint arXiv:2310.07820, 2023.
  8. L. Ma and S. Tian, “A hybrid cnn-lstm model for aircraft 4d trajectory prediction,” IEEE access, vol. 8, pp. 134 668–134 680, 2020.
  9. J. L. Yepes, I. Hwang, and M. Rotea, “New algorithms for aircraft intent inference and trajectory prediction,” Journal of guidance, control, and dynamics, vol. 30, no. 2, pp. 370–382, 2007.
  10. M. Porretta, M.-D. Dupuy, W. Schuster, A. Majumdar, and W. Ochieng, “Performance evaluation of a novel 4d trajectory prediction model for civil aircraft,” The Journal of Navigation, vol. 61, no. 3, pp. 393–420, 2008.
  11. D. P. Thipphavong, C. A. Schultz, A. G. Lee, and S. H. Chan, “Adaptive algorithm to improve trajectory prediction accuracy of climbing aircraft,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 1, pp. 15–24, 2013.
  12. L. R. I. Dy, K. B. Borgen, J. H. Mott, C. Sharma, Z. A. Marshall, and M. S. Kusz, “Validation of ads-b aircraft flight path data using onboard digital avionics information,” in 2021 Systems and Information Engineering Design Symposium (SIEDS).   IEEE, 2021, pp. 1–6.
  13. W. Zeng, Z. Quan, Z. Zhao, C. Xie, and X. Lu, “A deep learning approach for aircraft trajectory prediction in terminal airspace,” IEEE Access, vol. 8, pp. 151 250–151 266, 2020.
  14. Q. Zhang and J. H. Mott, “Improved framework for classification of flight phases of general aviation aircraft,” Transportation Research Record, vol. 2677, no. 3, pp. 1665–1675, 2023. [Online]. Available: https://doi.org/10.1177/03611981221127016
  15. C. Chang, W.-C. Peng, and T.-F. Chen, “Llm4ts: Two-stage fine-tuning for time-series forecasting with pre-trained llms,” arXiv preprint arXiv:2308.08469, 2023.
  16. T. Zhou, P. Niu, X. Wang, L. Sun, and R. Jin, “One fits all: Power general time series analysis by pretrained lm,” arXiv preprint arXiv:2302.11939, 2023.
  17. M. Jin, S. Wang, L. Ma, Z. Chu, J. Y. Zhang, X. Shi, P.-Y. Chen, Y. Liang, Y.-F. Li, S. Pan et al., “Time-llm: Time series forecasting by reprogramming large language models,” arXiv preprint arXiv:2310.01728, 2023.
  18. J. M. Hoekstra and J. Ellerbroek, “Bluesky atc simulator project: an open data and open source approach,” in Proceedings of the 7th international conference on research in air transportation, vol. 131.   FAA/Eurocontrol USA/Europe, 2016, p. 132.
  19. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971, 2023.
  20. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” arXiv preprint arXiv:2106.09685, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets