Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An attempt to generate new bridge types from latent space of PixelCNN (2401.05964v1)

Published 11 Jan 2024 in cs.LG, cs.AI, and cs.CV

Abstract: Try to generate new bridge types using generative artificial intelligence technology. Using symmetric structured image dataset of three-span beam bridge, arch bridge, cable-stayed bridge and suspension bridge , based on Python programming language, TensorFlow and Keras deep learning platform framework , PixelCNN is constructed and trained. The model can capture the statistical structure of the images and calculate the probability distribution of the next pixel when the previous pixels are given. From the obtained latent space sampling, new bridge types different from the training dataset can be generated. PixelCNN can organically combine different structural components on the basis of human original bridge types, creating new bridge types that have a certain degree of human original ability. Autoregressive models cannot understand the meaning of the sequence, while multimodal models combine regression and autoregressive models to understand the sequence. Multimodal models should be the way to achieve artificial general intelligence in the future.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets