Lecture notes on Malliavin calculus in regularity structures (2401.05935v2)
Abstract: Malliavin calculus provides a characterization of the centered model in regularity structures that is stable under removing the small-scale cut-off. In conjunction with a spectral gap inequality, it yields the stochastic estimates of the model. This becomes transparent on the level of a notion of model that parameterizes the solution manifold, and thus is indexed by multi-indices rather than trees, and which allows for a more geometric than combinatorial perspective. In these lecture notes, this is carried out for a PDE with heat operator, a cubic nonlinearity, and driven by additive noise, reminiscent of the stochastic quantization of the Euclidean $\phi4$ model. More precisely, we informally motivate our notion of the model $(\Pi,\Gamma)$ as charts and transition maps, respectively, of the nonlinear solution manifold. These geometric objects are algebrized in terms of formal power series, and their algebra automorphisms. We will assimilate the directional Malliavin derivative to a tangent vector of the solution manifold. This means that it can be treated as a modelled distribution, thereby connecting stochastic model estimates to pathwise solution theory, with its analytic tools of reconstruction and integration. We unroll an inductive calculus that in an automated way applies to the full subcritical regime.
- I. Bailleul and Y. Bruned. Random models for singular spdes. Preprint arXiv:2301.09596, 2023. URL: https://arxiv.org/abs/2301.09596.
- Renormalising SPDEs in regularity structures. J. Eur. Math. Soc. (JEMS), 23(3):869–947, 2021. doi:10.4171/jems/1025.
- Y. Bruned and V. Dotsenko. Novikov algebras and multi-indices in regularity structures. Preprint arXiv:2311.09091, 2023. URL: https://arxiv.org/abs/2311.09091.
- I. Bailleul and M. Hoshino. Random models on regularity-integrability structures. Preprint arXiv:2310.10202, 2023. URL: https://arxiv.org/abs/2310.10202.
- Algebraic renormalisation of regularity structures. Invent. Math., 215(3):1039–1156, 2019. doi:10.1007/s00222-018-0841-x.
- Y. Bruned and F. Katsetsiadis. Post-Lie algebras in Regularity Structures. Forum Math. Sigma, 11:e98, 2023. doi:10.1017/fms.2023.93.
- Y. Bruned and P. Linares. A top-down approach to algebraic renormalization in regularity structures based on multi-indices. Preprint arXiv:2307.03036, 2023. URL: https://arxiv.org/abs/2307.03036.
- V. I. Bogachev. Gaussian measures, volume 62 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998. doi:10.1090/surv/062.
- R. Catellier and K. Chouk. Paracontrolled distributions and the 3-dimensional stochastic quantization equation. Ann. Probab., 46(5):2621–2679, 2018. doi:10.1214/17-AOP1235.
- Langevin dynamic for the 2D Yang-Mills measure. Publ. Math. Inst. Hautes Études Sci., 136:1–147, 2022. doi:10.1007/s10240-022-00132-0.
- Stochastic quantisation of Yang-Mills-Higgs in 3d. Preprint arXiv:2201.03487, 2022. URL: https://arxiv.org/abs/2201.03487.
- Malliavin calculus for regularity structures: the case of gPAM. J. Funct. Anal., 272(1):363–419, 2017. doi:10.1016/j.jfa.2016.09.024.
- A. Chandra and M. Hairer. An analytic BPHZ theorem for Regularity Structures. Preprint arXiv:1612.08138, 2016. URL: https://arxiv.org/abs/1612.08138.
- I. Chevyrev. Hopf and pre-Lie algebras in regularity structures. Preprint arXiv:2206.14557, 2022. URL: https://arxiv.org/abs/2206.14557.
- I. Chevyrev. Stochastic quantization of Yang-Mills. J. Math. Phys., 63(9):Paper No. 091101, 19, 2022. doi:10.1063/5.0089431.
- A priori bounds for the Φ4superscriptΦ4\Phi^{4}roman_Φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT equation in the full sub-critical regime. Arch. Ration. Mech. Anal., 247(3):Paper No. 48, 76, 2023. doi:10.1007/s00205-023-01876-7.
- I. Chevyrev and H. Shen. Invariant measure and universality of the 2d Yang-Mills Langevin dynamic. Preprint arXiv:2302.12160, 2023. URL: https://arxiv.org/abs/2302.12160.
- P. Duch. Flow equation approach to singular stochastic PDEs. Preprint arXiv:2109.11380, 2021. URL: https://arxiv.org/abs/2109.11380.
- P. Duch. Lecture notes on flow equation approach to singular stochastic PDEs. 2023. URL: https://duch.faculty.wmi.amu.edu.pl/spde_flow_notes.pdf.
- M. Furlan and M. Gubinelli. Weak universality for a class of 3d stochastic reaction-diffusion models. Probab. Theory Related Fields, 173(3-4):1099–1164, 2019. doi:10.1007/s00440-018-0849-6.
- Paracontrolled distributions and singular PDEs. Forum Math. Pi, 3:e6, 75, 2015. doi:10.1017/fmp.2015.2.
- P. Gassiat and T. Klose. Gaussian rough paths lifts via complementary young regularity. Preprint arXiv:2311.04312, 2023. URL: https://arxiv.org/abs/2311.04312.
- P. Gassiat and C. Labbé. Existence of densities for the dynamic Φ34subscriptsuperscriptΦ43\Phi^{4}_{3}roman_Φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT model. Ann. Inst. Henri Poincaré Probab. Stat., 56(1):326–373, 2020. doi:10.1214/19-AIHP963.
- M. Gubinelli and N. Perkowski. An introduction to singular SPDEs. In Stochastic partial differential equations and related fields, volume 229 of Springer Proc. Math. Stat., pages 69–99. Springer, Cham, 2018. URL: https://doi.org/10.1007/978-3-319-74929-7_4, doi:10.1007/978-3-319-74929-7_4.
- R. S. Gvalani and M. Tempelmayr. Stochastic estimates for the thin-film equation with thermal noise. Preprint arXiv:2309.15829, 2023. URL: https://arxiv.org/abs/2309.15829.
- M. Gubinelli. Controlling rough paths. J. Funct. Anal., 216(1):86–140, 2004. doi:10.1016/j.jfa.2004.01.002.
- M. Hairer. A theory of regularity structures. Invent. Math., 198(2):269–504, 2014. doi:10.1007/s00222-014-0505-4.
- M. Hairer. Introduction to regularity structures. Braz. J. Probab. Stat., 29(29):175–210, 2015. doi:10.1214/14-BJPS241.
- M. Hairer and R. Steele. The Φ34superscriptsubscriptΦ34\Phi_{3}^{4}roman_Φ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT measure has sub-Gaussian tails. J. Stat. Phys., 186(3):Paper No. 38, 25, 2022. doi:10.1007/s10955-021-02866-3.
- M. Hairer and R. Steele. The BPHZ theorem for regularity structures via the spectral gap inequality. Preprint arXiv:2301.10081, 2023. URL: https://arxiv.org/abs/2301.10081.
- Variational methods for a singular SPDE yielding the universality of the magnetization ripple. Comm. Pure Appl. Math., 76(11):2959–3043, 2023. doi:10.1002/cpa.22093.
- J.-D. Jacques and L. Zambotti. Post-Lie algebras of derivations and regularity structures. Preprint arXiv:2306:02484, 2023. URL: https://arxiv.org/abs/2306:02484.
- A. Kupiainen. Renormalization group and stochastic PDEs. Ann. Henri Poincaré, 17(3):497–535, 2016. doi:10.1007/s00023-015-0408-y.
- P. Linares. Insertion pre-Lie products and translation of rough paths based on multi-indices. Preprint arXiv:2307.06769, 2023. URL: https://arxiv.org/abs/2307.06769.
- P. Linares and F. Otto. A tree-free approach to regularity structures: The regular case for quasi-linear equations. Preprint arXiv:2207.10627, 2022. URL: https://arxiv.org/abs/2207.10627.
- The structure group for quasi-linear equations via universal enveloping algebras. Comm. Amer. Math. Soc., 3:1–64, 2023. doi:10.1090/cams/16.
- A diagram-free approach to the stochastic estimates in regularity structures. Preprint arXiv:2112.10739, 2021. URL: https://arxiv.org/abs/2112.10739.
- T. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana, 14(2):215–310, 1998. doi:10.4171/RMI/240.
- A priori bounds for quasi-linear SPDEs in the full sub-critical regime. Preprint arXiv:2103.11039, 2021. URL: https://arxiv.org/abs/2103.11039.
- Lecture notes on tree-free regularity structures. Preprint arXiv:2301.00778, 2023. URL: https://arxiv.org/abs/2301.00778.
- G. Scharf. Finite quantum electrodynamics. Texts and Monographs in Physics. Springer-Verlag, Berlin, second edition, 1995. The causal approach. doi:10.1007/978-3-642-57750-5.
- P. Schönbauer. Malliavin calculus and densities for singular stochastic partial differential equations. Probab. Theory Related Fields, 186(3-4):643–713, 2023. doi:10.1007/s00440-023-01207-7.
- M. Tempelmayr. Characterizing models in regularity structures: a quasi-linear case. Preprint arXiv:2303.18192, 2023. URL: https://arxiv.org/abs/2303.18192.