Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Necessary and Sufficient Conditions for Avoiding Babuska's Paradox on Simplicial Meshes (2401.05897v1)

Published 11 Jan 2024 in math.NA and cs.NA

Abstract: It is shown that discretizations based on variational or weak formulations of the plate bending problem with simple support boundary conditions do not lead to failure of convergence when polygonal domain approximations are used and the imposed boundary conditions are compatible with the nodal interpolation of the restriction of certain regular functions to approximating domains. It is further shown that this is optimal in the sense that a full realization of the boundary conditions leads to failure of convergence for conforming methods. The abstract conditions imply that standard nonconforming and discontinuous Galerkin methods converge correctly while conforming methods require a suitable relaxation of the boundary condition. The results are confirmed by numerical experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Douglas N. Arnold and Shawn W. Walker “The Hellan-Herrmann-Johnson method with curved elements” In SIAM J. Numer. Anal. 58.5, 2020, pp. 2829–2855 DOI: 10.1137/19M1288723
  2. Hedy Attouch, Giuseppe Buttazzo and Gérard Michaille “Variational analysis in Sobolev and BV spaces” 6, MPS/SIAM Series on Optimization Society for IndustrialApplied Mathematics (SIAM), Philadelphia, PA, 2006, pp. xii+634
  3. I. Babuška “The theory of small changes in the domain of existence in the theory of partial differential equations and its applications” In Differential Equations and Their Applications (Proc. Conf., Prague, 1962) Publ. House Czech. Acad. Sci., Prague, 1963, pp. 13–26
  4. “The plate paradox for hard and soft simple support” In SIAM J. Math. Anal. 21.3, 1990, pp. 551–576 DOI: 10.1137/0521030
  5. Sören Bartels “Numerical approximation of partial differential equations” 64, Texts in Applied Mathematics Springer, [Cham], 2016, pp. xv+535 DOI: 10.1007/978-3-319-32354-1
  6. Sören Bartels “Numerical methods for nonlinear partial differential equations” 47, Springer Series in Computational Mathematics Springer, Cham, 2015, pp. x+393 DOI: 10.1007/978-3-319-13797-1
  7. “Numerical analysis of the LDG method for large deformations of prestrained plates” In IMA J. Numer. Anal. 43.2, 2023, pp. 627–662 DOI: 10.1093/imanum/drab103
  8. Andrea Bonito, Ricardo H. Nochetto and Dimitrios Ntogkas “DG approach to large bending plate deformations with isometry constraint” In Math. Models Methods Appl. Sci. 31.1, 2021, pp. 133–175 DOI: 10.1142/S0218202521500044
  9. Dietrich Braess “Finite elements” Cambridge University Press, Cambridge, 2007, pp. xviii+365 DOI: 10.1017/CBO9780511618635
  10. Susanne C. Brenner, Michael Neilan and Li-Yeng Sung “Isoparametric C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT interior penalty methods for plate bending problems on smooth domains” In Calcolo 50.1, 2013, pp. 35–67 DOI: 10.1007/s10092-012-0057-1
  11. Cesare Davini “ΓΓ\Gammaroman_Γ-convergence of external approximations in boundary value problems involving the bi-Laplacian” In Proceedings of the 9th International Congress on Computational and Applied Mathematics (Leuven, 2000) 140.1-2, 2002, pp. 185–208 DOI: 10.1016/S0377-0427(01)00525-8
  12. Cesare Davini “Gaussian curvature and Babuška’s paradox in the theory of plates” In Rational continua, classical and new Springer Italia, Milan, 2003, pp. 67–87
  13. “An unconstrained mixed method for the biharmonic problem” In SIAM J. Numer. Anal. 38.3, 2000, pp. 820–836 DOI: 10.1137/S0036142999359773
  14. Colette De Coster, Serge Nicaise and Guido Sweers “Comparing variational methods for the hinged Kirchhoff plate with corners” In Math. Nachr. 292.12, 2019, pp. 2574–2601 DOI: 10.1002/mana.201800092
  15. “Theory and practice of finite elements” 159, Applied Mathematical Sciences Springer-Verlag, New York, 2004, pp. xiv+524 DOI: 10.1007/978-1-4757-4355-5
  16. Filippo Gazzola, Hans-Christoph Grunau and Guido Sweers “Polyharmonic boundary value problems” 1991, Lecture Notes in Mathematics Springer-Verlag, Berlin, 2010, pp. xviii+423 DOI: 10.1007/978-3-642-12245-3
  17. “Paradoxes of the passage to the limit in solutions of boundary value problems for the approximation of smooth domains by polygons” In Izv. Akad. Nauk SSSR Ser. Mat. 50.6, 1986, pp. 1156–1177\bibrangessep1343
  18. S.A. Nazarov, G. Sweers and A. Stilyanou “On paradoxes in problems of the bending of polygonal plates with “hinge-supported” edges” In Dokl. Akad. Nauk 439.4, 2011, pp. 476–480
  19. R. Rannacher “Finite element approximation of simply supported plates and the Babuška paradox” In Z. Angew. Math. Mech. 59.3, 1979, pp. T73–T76
  20. Rolf Rannacher “On nonconforming and mixed finite element method for plate bending problems. The linear case” In RAIRO Anal. Numér. 13.4, 1979, pp. 369–387 DOI: 10.1051/m2an/1979130403691
  21. L.Ridgway Scott “A survey of displacement methods for the plate bending problem” In Formulations and computational algorithms in finite element analysis (U.S.-Germany Sympos., Mass. Inst. Tech., Cambridge, Mass., 1976) The M.I.T. Press, Cambridge, MA, 1977, pp. 855–876
  22. Gilbert Strang and George J. Fix “An analysis of the finite element method”, Prentice-Hall Series in Automatic Computation Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973, pp. xiv+306
  23. “Penalty resolution of the Babuška circle paradox” In Comput. Methods Appl. Mech. Engrg. 41.1, 1983, pp. 11–28 DOI: 10.1016/0045-7825(83)90050-6
  24. Marret Wissel “Das Babuška-Paradoxon: Numerische Experimente zu einer stückweise linearen Randapproximation bei Biegeproblemen”, 2023

Summary

We haven't generated a summary for this paper yet.