Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The inverse Mpemba effect demonstrated on a single trapped ion qubit (2401.05830v2)

Published 11 Jan 2024 in quant-ph and cond-mat.stat-mech

Abstract: The Mpemba effect is a counter-intuitive phenomena in which a hot system reaches a cold temperature faster than a colder system, under otherwise identical conditions. Here we propose a quantum analog of the Mpemba effect, on the simplest quantum system, a qubit. Specifically, we show it exhibits an inverse effect, in which a cold qubit reaches a hot temperature faster than a hot qubit. Furthermore, in our system a cold qubit can heat up exponentially faster, manifesting the strong version of the effect. This occurs only for sufficiently coherent systems, making this effect quantum mechanical, i.e. due to interference effects. We experimentally demonstrate our findings on a single ${88}\text{Sr}+$ trapped ion qubit. The existence of this anomalous relaxation effect in simple quantum systems reveals its fundamentality, and may have a role in designing and operating quantum information processing devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. E. B. Mpemba and D. G. Osborne, Cool?, Physics Education 4, 172 (1969).
  2. M. Jeng, The Mpemba effect: When can hot water freeze faster than cold?, American Journal of Physics 74, 514 (2006).
  3. A. Kumar and J. Bechhoefer, Exponentially faster cooling in a colloidal system, Nature 584, 64 (2020).
  4. Z. Lu and O. Raz, Nonequilibrium thermodynamics of the markovian mpemba effect and its inverse, Proceedings of the National Academy of Sciences 114, 5083 (2017).
  5. A. Kumar, R. Chétrite, and J. Bechhoefer, Anomalous heating in a colloidal system, Proceedings of the National Academy of Sciences 119, e2118484119 (2022).
  6. M. R. Walker and M. Vucelja, Anomalous thermal relaxation of langevin particles in a piecewise-constant potential, Journal of Statistical Mechanics: Theory and Experiment 2021, 113105 (2021).
  7. R. Holtzman and O. Raz, Landau theory for the mpemba effect through phase transitions, Communications Physics 5, 280 (2022).
  8. J. Degünther and U. Seifert, Anomalous relaxation from a non-equilibrium steady state: An isothermal analog of the mpemba effect, Europhysics Letters 139, 41002 (2022).
  9. D. M. Busiello, D. Gupta, and A. Maritan, Inducing and optimizing markovian mpemba effect with stochastic reset, New Journal of Physics 23, 103012 (2021).
  10. G. Teza, R. Yaacoby, and O. Raz, Eigenvalue crossing as a phase transition in relaxation dynamics, Phys. Rev. Lett. 130, 207103 (2023a).
  11. F. J. Schwarzendahl and H. Löwen, Anomalous cooling and overcooling of active colloids, Physical review letters 129, 138002 (2022).
  12. S. Zhang and J.-X. Hou, Theoretical model for the mpemba effect through the canonical first-order phase transition, Physical Review E 106, 034131 (2022).
  13. G. Teza, R. Yaacoby, and O. Raz, Relaxation shortcuts through boundary coupling, Physical review letters 131, 017101 (2023b).
  14. A. Santos and A. Prados, Mpemba effect in molecular gases under nonlinear drag, Physics of Fluids 32 (2020).
  15. R. Chétrite, A. Kumar, and J. Bechhoefer, The metastable Mpemba effect corresponds to a non-monotonic temperature dependence of extractable work, Front. Phys. 9, 141 (2021).
  16. A. Gal and O. Raz, Precooling strategy allows exponentially faster heating, Physical review letters 124, 060602 (2020).
  17. A. Gijón, A. Lasanta, and E. Hernández, Paths towards equilibrium in molecular systems: The case of water, Physical Review E 100, 032103 (2019).
  18. N. Vadakkayil and S. K. Das, Should a hotter paramagnet transform quicker to a ferromagnet? monte carlo simulation results for ising model, Physical Chemistry Chemical Physics 23, 11186 (2021).
  19. F. Carollo, A. Lasanta, and I. Lesanovsky, Exponentially accelerated approach to stationarity in markovian open quantum systems through the mpemba effect, Phys. Rev. Lett. 127, 060401 (2021).
  20. S. Kochsiek, F. Carollo, and I. Lesanovsky, Accelerating the approach of dissipative quantum spin systems towards stationarity through global spin rotations, Phys. Rev. A 106, 012207 (2022).
  21. A. Nava and M. Fabrizio, Lindblad dissipative dynamics in the presence of phase coexistence, Phys. Rev. B 100, 125102 (2019).
  22. A. K. Chatterjee, S. Takada, and H. Hayakawa, Quantum mpemba effect in a quantum dot with reservoirs, Phys. Rev. Lett. 131, 080402 (2023).
  23. F. Ivander, N. Anto-Sztrikacs, and D. Segal, Hyperacceleration of quantum thermalization dynamics by bypassing long-lived coherences: An analytical treatment, Phys. Rev. E 108, 014130 (2023).
  24. Supplemental material, including additional derivation and technical information.
Citations (15)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com