Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cheetah: Bridging the Gap Between Machine Learning and Particle Accelerator Physics with High-Speed, Differentiable Simulations (2401.05815v1)

Published 11 Jan 2024 in physics.acc-ph, cs.AI, and cs.LG

Abstract: Machine learning has emerged as a powerful solution to the modern challenges in accelerator physics. However, the limited availability of beam time, the computational cost of simulations, and the high-dimensionality of optimisation problems pose significant challenges in generating the required data for training state-of-the-art machine learning models. In this work, we introduce Cheetah, a PyTorch-based high-speed differentiable linear-beam dynamics code. Cheetah enables the fast collection of large data sets by reducing computation times by multiple orders of magnitude and facilitates efficient gradient-based optimisation for accelerator tuning and system identification. This positions Cheetah as a user-friendly, readily extensible tool that integrates seamlessly with widely adopted machine learning tools. We showcase the utility of Cheetah through five examples, including reinforcement learning training, gradient-based beamline tuning, gradient-based system identification, physics-informed Bayesian optimisation priors, and modular neural network surrogate modelling of space charge effects. The use of such a high-speed differentiable simulation code will simplify the development of machine learning-based methods for particle accelerators and fast-track their integration into everyday operations of accelerator facilities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. K. Fujita, IEEE Access 9, 164017 (2021).
  2. G. Team, Gemini: A family of highly capable multimodal models (2023).
  3. K. Flöttmann, ASTRA – A space charge tracking algorithm (1997).
  4. M. Borland, in Proceedings of the 6th International Computational Accelerator Physics Conference (2000).
  5. CERN, MAD-X – Methodical accelerator design (1990).
  6. R. Roussel and A. L. Edelen, Applications of differentiable physics simulations in particle accelerator modeling (2022).
  7. J. Qiang, Phys. Rev. Accel. Beams 26, 024601 (2023).
  8. O. Stein, J. Kaiser, and A. Eichler, in Proceedings of the 13th International Particle Accelerator Conference (2022).
  9. https://cheetah-accelerator.readthedocs.io.
  10. K. L. Brown, Adv. Part. Phys. 1, 71 (1968).
  11. J. Rosenzweig and L. Serafini, Phys. Rev. E 49, 1599 (1994).
  12. F. Andreas, LatticeJSON, https://github.com/nobeam/latticejson (2019).
  13. E. Panofski et al., Instruments 5 (2021).
  14. S. Fujimoto, H. van Hoof, and D. Meger, Addressing function approximation error in actor-critic methods (2018), preprint available at https://arxiv.org/abs/1802.09477v3.
  15. D. P. Kingma and J. Ba, CoRR abs/1412.6980 (2014).
  16. C. Xu, R. Roussel, and A. Edelen, arXiv preprint arXiv:2211.09028  (2022).
  17. W. Falcon and The PyTorch Lightning team, PyTorch Lightning (2019).
  18. L. Biewald, Experiment tracking with Weights and Biases (2020), software available from wandb.com.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets