Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral extremal results on trees (2401.05786v2)

Published 11 Jan 2024 in math.CO

Abstract: Let ${\rm spex}(n,F)$ be the maximum spectral radius over all $F$-free graphs of order $n$, and ${\rm SPEX}(n,F)$ be the family of $F$-free graphs of order $n$ with spectral radius equal to ${\rm spex}(n,F)$. Given integers $n,k,p$ with $n>k>0$ and $0\leq p\leq \lfloor(n-k)/2\rfloor$, let $S_{n,k}{p}$ be the graph obtained from $K_k\nabla(n-k)K_1$ by embedding $p$ independent edges within its independent set, where `$\nabla$' means the join product. For $n\geq\ell\geq 4$, let $G_{n,\ell}=S_{n,(\ell-2)/2}{0}$ if $\ell$ is even, and $G_{n,\ell}=S_{n,(\ell-3)/2}{1}$ if $\ell$ is odd. Cioab\u{a}, Desai and Tait [SIAM J. Discrete Math. 37 (3) (2023) 2228--2239] showed that for $\ell\geq 6$ and sufficiently large $n$, if $\rho(G)\geq \rho(G_{n,\ell})$, then $G$ contains all trees of order $\ell$ unless $G=G_{n,\ell}$. They further posed a problem to study ${\rm spex}(n,F)$ for various specific trees $F$. Fix a tree $F$ of order $\ell\geq 6$, let $A$ and $B$ be two partite sets of $F$ with $|A|\leq |B|$, and set $q=|A|-1$. We first show that any graph in ${\rm SPEX}(n,F)$ contains a spanning subgraph $K_{q,n-q}$ for $q\geq 1$ and sufficiently large $n$. Consequently, $\rho(K_{q,n-q})\leq {\rm spex}(n,F)\leq \rho(G_{n,\ell})$, we further respectively characterize all trees $F$ with these two equalities holding. Secondly, we characterize the spectral extremal graphs for some specific trees and provide asymptotic spectral extremal values of the remaining trees. In particular, we characterize the spectral extremal graphs for all spiders, surprisingly, the extremal graphs are not always the spanning subgraph of $G_{n,\ell}$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.