Papers
Topics
Authors
Recent
Search
2000 character limit reached

Spectral extremal results on trees

Published 11 Jan 2024 in math.CO | (2401.05786v2)

Abstract: Let ${\rm spex}(n,F)$ be the maximum spectral radius over all $F$-free graphs of order $n$, and ${\rm SPEX}(n,F)$ be the family of $F$-free graphs of order $n$ with spectral radius equal to ${\rm spex}(n,F)$. Given integers $n,k,p$ with $n>k>0$ and $0\leq p\leq \lfloor(n-k)/2\rfloor$, let $S_{n,k}{p}$ be the graph obtained from $K_k\nabla(n-k)K_1$ by embedding $p$ independent edges within its independent set, where `$\nabla$' means the join product. For $n\geq\ell\geq 4$, let $G_{n,\ell}=S_{n,(\ell-2)/2}{0}$ if $\ell$ is even, and $G_{n,\ell}=S_{n,(\ell-3)/2}{1}$ if $\ell$ is odd. Cioab\u{a}, Desai and Tait [SIAM J. Discrete Math. 37 (3) (2023) 2228--2239] showed that for $\ell\geq 6$ and sufficiently large $n$, if $\rho(G)\geq \rho(G_{n,\ell})$, then $G$ contains all trees of order $\ell$ unless $G=G_{n,\ell}$. They further posed a problem to study ${\rm spex}(n,F)$ for various specific trees $F$. Fix a tree $F$ of order $\ell\geq 6$, let $A$ and $B$ be two partite sets of $F$ with $|A|\leq |B|$, and set $q=|A|-1$. We first show that any graph in ${\rm SPEX}(n,F)$ contains a spanning subgraph $K_{q,n-q}$ for $q\geq 1$ and sufficiently large $n$. Consequently, $\rho(K_{q,n-q})\leq {\rm spex}(n,F)\leq \rho(G_{n,\ell})$, we further respectively characterize all trees $F$ with these two equalities holding. Secondly, we characterize the spectral extremal graphs for some specific trees and provide asymptotic spectral extremal values of the remaining trees. In particular, we characterize the spectral extremal graphs for all spiders, surprisingly, the extremal graphs are not always the spanning subgraph of $G_{n,\ell}$.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.