Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Indoor Fingerprinting Localization based on Few-Shot Meta-Learning with CSI Images (2401.05711v1)

Published 11 Jan 2024 in cs.LG and eess.SP

Abstract: While fingerprinting localization is favored for its effectiveness, it is hindered by high data acquisition costs and the inaccuracy of static database-based estimates. Addressing these issues, this letter presents an innovative indoor localization method using a data-efficient meta-learning algorithm. This approach, grounded in the ``Learning to Learn'' paradigm of meta-learning, utilizes historical localization tasks to improve adaptability and learning efficiency in dynamic indoor environments. We introduce a task-weighted loss to enhance knowledge transfer within this framework. Our comprehensive experiments confirm the method's robustness and superiority over current benchmarks, achieving a notable 23.13\% average gain in Mean Euclidean Distance, particularly effective in scenarios with limited CSI data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. H. Lu, Y. Zeng, C. You, Y. Han, J. Zhang, Z. Wang, Z. Dong, S. Jin, C.-X. Wang, T. Jiang et al., “A tutorial on near-field xl-mimo communications towards 6g,” arXiv preprint arXiv:2310.11044, 2023.
  2. C. Ruizhi and C. Liang, “Indoor positioning with smartphones: The state-of-the-art and the challenges,” Acta Geodaetica et Cartographica Sinica, vol. 46, no. 10, p. 1316, 2017.
  3. L. Chen, X. Zhou, F. Chen, L.-L. Yang, and R. Chen, “Carrier phase ranging for indoor positioning with 5g nr signals,” IEEE Internet of Things Journal, vol. 9, no. 13, pp. 10 908–10 919, 2021.
  4. E. Y. Menta, N. Malm, R. Jäntti, K. Ruttik, M. Costa, and K. Leppänen, “On the performance of aoa–based localization in 5g ultra–dense networks,” Ieee Access, vol. 7, pp. 33 870–33 880, 2019.
  5. X. Guo, N. Ansari, L. Li, and L. Duan, “A hybrid positioning system for location-based services: Design and implementation,” IEEE Communications Magazine, vol. 58, no. 5, pp. 90–96, 2020.
  6. Z. Yang, Z. Zhou, and Y. Liu, “From rssi to csi: Indoor localization via channel response,” ACM Computing Surveys (CSUR), vol. 46, no. 2, pp. 1–32, 2013.
  7. O. W. Sensing, “Magicol: Indoor localization using pervasive magnetic field and opportunistic wifi sensing.”
  8. L. Chen, I. Ahriz, and D. Le Ruyet, “Aoa-aware probabilistic indoor location fingerprinting using channel state information,” IEEE internet of things journal, vol. 7, no. 11, pp. 10 868–10 883, 2020.
  9. R. Zhou, X. Lu, P. Zhao, and J. Chen, “Device-free presence detection and localization with svm and csi fingerprinting,” IEEE Sensors Journal, vol. 17, no. 23, pp. 7990–7999, 2017.
  10. M. Comiter and H. Kung, “Localization convolutional neural networks using angle of arrival images,” in 2018 IEEE global communications conference (GLOBECOM).   IEEE, 2018, pp. 1–7.
  11. Y.-H. H. Tsai, Y.-R. Yeh, and Y.-C. F. Wang, “Learning cross-domain landmarks for heterogeneous domain adaptation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 5081–5090.
  12. Y. He, X. Jin, G. Ding, Y. Guo, J. Han, J. Zhang, and S. Zhao, “Heterogeneous transfer learning with weighted instance-correspondence data,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 4099–4106.
  13. Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric for image retrieval,” International journal of computer vision, vol. 40, pp. 99–121, 2000.
  14. W. Wei, J. Yan, X. Wu, C. Wang, and G. Zhang, “A meta-learning approach for device-free indoor localization,” IEEE Communications Letters, vol. 27, no. 3, pp. 846–850, 2023.
  15. X. Zhu, W. Qu, X. Zhou, L. Zhao, Z. Ning, and T. Qiu, “Intelligent fingerprint-based localization scheme using csi images for internet of things,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 4, pp. 2378–2391, 2022.
  16. C. Xiang, S. Zhang, S. Xu, and G. C. Alexandropoulos, “Self-calibrating indoor localization with crowdsourcing fingerprints and transfer learning,” in ICC 2021-IEEE International Conference on Communications.   IEEE, 2021, pp. 1–6.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets