A Cold-Atom Particle Collider (2401.05489v1)
Abstract: A major objective of the strong ongoing drive to realize quantum simulators of gauge theories is achieving the capability to probe collider-relevant physics on them. In this regard, a highly pertinent and sought-after application is the controlled collisions of elementary and composite particles, as well as the scattering processes in their wake. Here, we propose particle-collision experiments in a cold-atom quantum simulator for a $1+1$D $\mathrm{U}(1)$ lattice gauge theory with a tunable topological $\theta$-term, where we demonstrate an experimentally feasible protocol to impart momenta to elementary (anti)particles and their meson composites. We numerically benchmark the collisions of moving wave packets for both elementary and composite particles, uncovering a plethora of rich phenomena, such as oscillatory string dynamics in the wake of elementary (anti)particle collisions due to confinement. We also probe string inversion and entropy production processes across Coleman's phase transition through far-from-equilibrium quenches. We further demonstrate how collisions of composite particles unveil their internal structure. Our work paves the way towards the experimental investigation of collision dynamics in state-of-the-art quantum simulators of gauge theories, and sets the stage for microscopic understanding of collider-relevant physics in these platforms.
- ATLAS Collaboration, “Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc,” Physics Letters B 716, 1–29 (2012a).
- CMS Collaboration, “Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc,” Physics Letters B 716, 30–61 (2012b).
- B.B. Back, M.D. Baker, M Ballintijn, D.S. Barton, B Becker, R.R. Betts, A.A. Bickley, R Bindel, A Budzanowski, W Busza, et al., “The PHOBOS perspective on discoveries at RHIC,” Nuclear Physics A 757, 28–101 (2005).
- I Arsene, I.G. Bearden, D Beavis, C Besliu, B Budick, H. Bøggild, C Chasman, C.H. Christensen, P Christiansen, J Cibor, et al., “Quark–gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment,” Nuclear Physics A 757, 1–27 (2005).
- M. Benedikt and F. Zimmermann, https://cerncourier.com/a/the-future-circular-collider-study/ (2014).
- Giorgio Arcadi, Maíra Dutra, Pradipta Ghosh, Manfred Lindner, Yann Mambrini, Mathias Pierre, Stefano Profumo, and Farinaldo S. Queiroz, “The waning of the wimp? a review of models, searches, and constraints,” The European Physical Journal C 78, 203 (2018).
- Torbjörn Sjöstrand, ‘‘High-energy-physics event generation with PYTHIA 5.7 and JETSET 7.4,” Computer Physics Communications 82, 74–89 (1994).
- Steven R. White and Adrian E. Feiguin, “Real-time evolution using the density matrix renormalization group,” Phys. Rev. Lett. 93, 076401 (2004).
- U. Schollwöck, “The density-matrix renormalization group,” Rev. Mod. Phys. 77, 259–315 (2005).
- Ulrich Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Annals of Physics 326, 96–192 (2011), january 2011 Special Issue.
- Sebastian Paeckel, Thomas Köhler, Andreas Swoboda, Salvatore R. Manmana, Ulrich Schollwöck, and Claudius Hubig, “Time-evolution methods for matrix-product states,” Annals of Physics 411, 167998 (2019).
- B. Andersson, G. Gustafson, G. Ingelman, and T. Sjöstrand, “Parton fragmentation and string dynamics,” Physics Reports 97, 31–145 (1983).
- Richard P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics 21, 467–488 (1982).
- Seth Lloyd, “Universal quantum simulators,” Science 273, 1073–1078 (1996).
- Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885–964 (2008).
- Philipp Hauke, Fernando M Cucchietti, Luca Tagliacozzo, Ivan Deutsch, and Maciej Lewenstein, “Can one trust quantum simulators?” Reports on Progress in Physics 75, 082401 (2012).
- I. M. Georgescu, S. Ashhab, and Franco Nori, “Quantum simulation,” Rev. Mod. Phys. 86, 153–185 (2014).
- M. Dalmonte and S. Montangero, “Lattice gauge theory simulations in the quantum information era,” Contemporary Physics 57, 388–412 (2016).
- Mari Carmen Bañuls, Rainer Blatt, Jacopo Catani, Alessio Celi, Juan Ignacio Cirac, Marcello Dalmonte, Leonardo Fallani, Karl Jansen, Maciej Lewenstein, Simone Montangero, Christine A. Muschik, Benni Reznik, Enrique Rico, Luca Tagliacozzo, Karel Van Acoleyen, Frank Verstraete, Uwe-Jens Wiese, Matthew Wingate, Jakub Zakrzewski, and Peter Zoller, “Simulating lattice gauge theories within quantum technologies,” The European Physical Journal D 74, 165 (2020).
- Erez Zohar, J Ignacio Cirac, and Benni Reznik, “Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices,” Reports on Progress in Physics 79, 014401 (2015).
- Yuri Alexeev, Dave Bacon, Kenneth R. Brown, Robert Calderbank, Lincoln D. Carr, Frederic T. Chong, Brian DeMarco, Dirk Englund, Edward Farhi, Bill Fefferman, Alexey V. Gorshkov, Andrew Houck, Jungsang Kim, Shelby Kimmel, Michael Lange, Seth Lloyd, Mikhail D. Lukin, Dmitri Maslov, Peter Maunz, Christopher Monroe, John Preskill, Martin Roetteler, Martin J. Savage, and Jeff Thompson, “Quantum computer systems for scientific discovery,” PRX Quantum 2, 017001 (2021).
- Monika Aidelsburger, Luca Barbiero, Alejandro Bermudez, Titas Chanda, Alexandre Dauphin, Daniel González-Cuadra, Przemysław R. Grzybowski, Simon Hands, Fred Jendrzejewski, Johannes Jünemann, Gediminas Juzeliūnas, Valentin Kasper, Angelo Piga, Shi-Ju Ran, Matteo Rizzi, Germán Sierra, Luca Tagliacozzo, Emanuele Tirrito, Torsten V. Zache, Jakub Zakrzewski, Erez Zohar, and Maciej Lewenstein, “Cold atoms meet lattice gauge theory,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 20210064 (2022).
- Erez Zohar, “Quantum simulation of lattice gauge theories in more than one space dimension: requirements, challenges and methods,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 20210069 (2022).
- Natalie Klco, Alessandro Roggero, and Martin J Savage, “Standard model physics and the digital quantum revolution: thoughts about the interface,” Reports on Progress in Physics 85, 064301 (2022).
- Christian W. Bauer, Zohreh Davoudi, A. Baha Balantekin, Tanmoy Bhattacharya, Marcela Carena, Wibe A. de Jong, Patrick Draper, Aida El-Khadra, Nate Gemelke, Masanori Hanada, Dmitri Kharzeev, Henry Lamm, Ying-Ying Li, Junyu Liu, Mikhail Lukin, Yannick Meurice, Christopher Monroe, Benjamin Nachman, Guido Pagano, John Preskill, Enrico Rinaldi, Alessandro Roggero, David I. Santiago, Martin J. Savage, Irfan Siddiqi, George Siopsis, David Van Zanten, Nathan Wiebe, Yukari Yamauchi, Kübra Yeter-Aydeniz, and Silvia Zorzetti, “Quantum simulation for high-energy physics,” PRX Quantum 4, 027001 (2023a).
- Christian W. Bauer, Zohreh Davoudi, Natalie Klco, and Martin J. Savage, “Quantum simulation of fundamental particles and forces,” Nature Reviews Physics 5, 420–432 (2023b).
- Lena Funcke, Tobias Hartung, Karl Jansen, and Stefan Kühn, “Review on quantum computing for lattice field theory,” (2023), arXiv:2302.00467 [hep-lat] .
- Alberto Di Meglio, Karl Jansen, Ivano Tavernelli, Constantia Alexandrou, Srinivasan Arunachalam, Christian W. Bauer, Kerstin Borras, Stefano Carrazza, Arianna Crippa, Vincent Croft, Roland de Putter, Andrea Delgado, Vedran Dunjko, Daniel J. Egger, Elias Fernandez-Combarro, Elina Fuchs, Lena Funcke, Daniel Gonzalez-Cuadra, Michele Grossi, Jad C. Halimeh, Zoe Holmes, Stefan Kuhn, Denis Lacroix, Randy Lewis, Donatella Lucchesi, Miriam Lucio Martinez, Federico Meloni, Antonio Mezzacapo, Simone Montangero, Lento Nagano, Voica Radescu, Enrique Rico Ortega, Alessandro Roggero, Julian Schuhmacher, Joao Seixas, Pietro Silvi, Panagiotis Spentzouris, Francesco Tacchino, Kristan Temme, Koji Terashi, Jordi Tura, Cenk Tuysuz, Sofia Vallecorsa, Uwe-Jens Wiese, Shinjae Yoo, and Jinglei Zhang, “Quantum computing for high-energy physics: State of the art and challenges. summary of the qc4hep working group,” (2023), arXiv:2307.03236 [quant-ph] .
- Jad C. Halimeh, Monika Aidelsburger, Fabian Grusdt, Philipp Hauke, and Bing Yang, “Cold-atom quantum simulators of gauge theories,” (2023), arXiv:2310.12201 [cond-mat.quant-gas] .
- Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, and Rainer Blatt, “Real-time dynamics of lattice gauge theories with a few-qubit quantum computer,” Nature 534, 516–519 (2016).
- Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551, 579–584 (2017).
- Han-Ning Dai, Bing Yang, Andreas Reingruber, Hui Sun, Xiao-Fan Xu, Yu-Ao Chen, Zhen-Sheng Yuan, and Jian-Wei Pan, “Four-body ring-exchange interactions and anyonic statistics within a minimal toric-code hamiltonian,” Nature Physics 13, 1195–1200 (2017).
- N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage, “Quantum-classical computation of Schwinger model dynamics using quantum computers,” Phys. Rev. A 98, 032331 (2018).
- Frederik Görg, Kilian Sandholzer, Joaquín Minguzzi, Rémi Desbuquois, Michael Messer, and Tilman Esslinger, “Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter,” Nature Physics 15, 1161–1167 (2019).
- Christian Schweizer, Fabian Grusdt, Moritz Berngruber, Luca Barbiero, Eugene Demler, Nathan Goldman, Immanuel Bloch, and Monika Aidelsburger, “Floquet approach to ℤℤ\mathbb{Z}roman_ℤ2 lattice gauge theories with ultracold atoms in optical lattices,” Nature Physics 15, 1168–1173 (2019).
- Alexander Mil, Torsten V. Zache, Apoorva Hegde, Andy Xia, Rohit P. Bhatt, Markus K. Oberthaler, Philipp Hauke, Jürgen Berges, and Fred Jendrzejewski, “A scalable realization of local U(1) gauge invariance in cold atomic mixtures,” Science 367, 1128–1130 (2020).
- Zhan Wang, Zi-Yong Ge, Zhongcheng Xiang, Xiaohui Song, Rui-Zhen Huang, Pengtao Song, Xue-Yi Guo, Luhong Su, Kai Xu, Dongning Zheng, and Heng Fan, “Observation of emergent 𝕫2subscript𝕫2{\mathbb{z}}_{2}roman_𝕫 start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge invariance in a superconducting circuit,” Phys. Rev. Research 4, L022060 (2022).
- Julius Mildenberger, Wojciech Mruczkiewicz, Jad C. Halimeh, Zhang Jiang, and Philipp Hauke, “Probing confinement in a ℤ2subscriptℤ2\mathbb{Z}_{2}roman_ℤ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT lattice gauge theory on a quantum computer,” (2022), arXiv:2203.08905 [quant-ph] .
- Roland C. Farrell, Marc Illa, Anthony N. Ciavarella, and Martin J. Savage, “Scalable circuits for preparing ground states on digital quantum computers: The schwinger model vacuum on 100 qubits,” (2023), arXiv:2308.04481 [quant-ph] .
- Takis Angelides, Pranay Naredi, Arianna Crippa, Karl Jansen, Stefan Kühn, Ivano Tavernelli, and Derek S. Wang, “First-order phase transition of the schwinger model with a quantum computer,” (2023), arXiv:2312.12831 [hep-lat] .
- Jürgen Berges, Michal P. Heller, Aleksas Mazeliauskas, and Raju Venugopalan, “Qcd thermalization: Ab initio approaches and interdisciplinary connections,” Rev. Mod. Phys. 93, 035003 (2021).
- Bing Yang, Hui Sun, Robert Ott, Han-Yi Wang, Torsten V. Zache, Jad C. Halimeh, Zhen-Sheng Yuan, Philipp Hauke, and Jian-Wei Pan, “Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator,” Nature 587, 392–396 (2020a).
- Zhao-Yu Zhou, Guo-Xian Su, Jad C. Halimeh, Robert Ott, Hui Sun, Philipp Hauke, Bing Yang, Zhen-Sheng Yuan, Jürgen Berges, and Jian-Wei Pan, “Thermalization dynamics of a gauge theory on a quantum simulator,” Science 377, 311–314 (2022).
- Guo-Xian Su, Hui Sun, Ana Hudomal, Jean-Yves Desaules, Zhao-Yu Zhou, Bing Yang, Jad C. Halimeh, Zhen-Sheng Yuan, Zlatko Papić, and Jian-Wei Pan, “Observation of many-body scarring in a bose-hubbard quantum simulator,” Phys. Rev. Res. 5, 023010 (2023).
- Han-Yi Wang, Wei-Yong Zhang, Zhiyuan Yao, Ying Liu, Zi-Hang Zhu, Yong-Guang Zheng, Xuan-Kai Wang, Hui Zhai, Zhen-Sheng Yuan, and Jian-Wei Pan, “Interrelated thermalization and quantum criticality in a lattice gauge simulator,” Phys. Rev. Lett. 131, 050401 (2023).
- Wei-Yong Zhang, Ying Liu, Yanting Cheng, Ming-Gen He, Han-Yi Wang, Tian-Yi Wang, Zi-Hang Zhu, Guo-Xian Su, Zhao-Yu Zhou, Yong-Guang Zheng, Hui Sun, Bing Yang, Philipp Hauke, Wei Zheng, Jad C. Halimeh, Zhen-Sheng Yuan, and Jian-Wei Pan, “Observation of microscopic confinement dynamics by a tunable topological θ𝜃\thetaitalic_θ-angle,” , 1–14 (2023), arXiv:2306.11794 .
- Jad C. Halimeh and Philipp Hauke, “Reliability of lattice gauge theories,” Phys. Rev. Lett. 125, 030503 (2020).
- Jad C. Halimeh, Haifeng Lang, Julius Mildenberger, Zhang Jiang, and Philipp Hauke, “Gauge-symmetry protection using single-body terms,” PRX Quantum 2, 040311 (2021).
- Maarten Van Damme, Haifeng Lang, Philipp Hauke, and Jad C. Halimeh, “Reliability of lattice gauge theories in the thermodynamic limit,” (2021), arXiv:2104.07040 [cond-mat.quant-gas] .
- Jad C. Halimeh and Philipp Hauke, “Stabilizing gauge theories in quantum simulators: A brief review,” (2022), arXiv:2204.13709 [cond-mat.quant-gas] .
- T. Pichler, M. Dalmonte, E. Rico, P. Zoller, and S. Montangero, “Real-time dynamics in u(1) lattice gauge theories with tensor networks,” Phys. Rev. X 6, 011023 (2016).
- Marco Rigobello, Simone Notarnicola, Giuseppe Magnifico, and Simone Montangero, “Entanglement generation in (1+1) D QED scattering processes,” Physical Review D 104, 114501 (2021), arXiv:2105.03445 .
- Yahui Chai, Arianna Crippa, Karl Jansen, Stefan Kühn, Vincent R. Pascuzzi, Francesco Tacchino, and Ivano Tavernelli, “Entanglement production from scattering of fermionic wave packets: a quantum computing approach,” , 1–19 (2023), arXiv:2312.02272 .
- Ron Belyansky, Seth Whitsitt, Niklas Mueller, Ali Fahimniya, Elizabeth R Bennewitz, Zohreh Davoudi, and Alexey V Gorshkov, “High-Energy Collision of Quarks and Hadrons in the Schwinger Model: From Tensor Networks to Circuit QED,” (2023), arXiv:2307.02522 .
- Joseph Vovrosh, Rick Mukherjee, Alvise Bastianello, and Johannes Knolle, “Dynamical Hadron Formation in Long-Range Interacting Quantum Spin Chains,” PRX Quantum 3 (2022), 10.1103/PRXQuantum.3.040309, arXiv:2204.05641 .
- Ashley Milsted, Junyu Liu, John Preskill, and Guifre Vidal, “Collisions of False-Vacuum Bubble Walls in a Quantum Spin Chain,” PRX Quantum 3, 1 (2022), arXiv:2012.07243 .
- Johannes Hauschild and Frank Pollmann, “Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy),” SciPost Phys. Lect. Notes , 5 (2018), code available from https://github.com/tenpy/tenpy, arXiv:1805.00055 .
- Ian P. McCulloch, “Matrix product toolkit,” https://github.com/mptoolkit.
- John Kogut and Leonard Susskind, “Hamiltonian formulation of wilson’s lattice gauge theories,” Phys. Rev. D 11, 395–408 (1975).
- Leonard Susskind, “Lattice fermions,” Physical Review D 16, 3031–3039 (1977).
- Sidney Coleman, R Jackiw, and Leonard Susskind, “Charge shielding and quark confinement in the massive Schwinger model,” Annals of Physics 93, 267–275 (1975).
- S Chandrasekharan and U.-J Wiese, “Quantum link models: A discrete approach to gauge theories,” Nuclear Physics B 492, 455 – 471 (1997).
- U.-J. Wiese, “Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories,” Annalen der Physik 525, 777–796 (2013).
- V Kasper, F Hebenstreit, F Jendrzejewski, M K Oberthaler, and J Berges, “Implementing quantum electrodynamics with ultracold atomic systems,” New Journal of Physics 19, 023030 (2017).
- Dayou Yang, Gouri Shankar Giri, Michael Johanning, Christof Wunderlich, Peter Zoller, and Philipp Hauke, “Analog quantum simulation of (1+1)11(1+1)( 1 + 1 )-dimensional lattice qed with trapped ions,” Phys. Rev. A 94, 052321 (2016).
- Boye Buyens, Simone Montangero, Jutho Haegeman, Frank Verstraete, and Karel Van Acoleyen, “Finite-representation approximation of lattice gauge theories at the continuum limit with tensor networks,” Phys. Rev. D 95, 094509 (2017).
- Mari Carmen Bañuls and Krzysztof Cichy, “Review on novel methods for lattice gauge theories,” Reports on Progress in Physics 83, 024401 (2020).
- Torsten V. Zache, Maarten Van Damme, Jad C. Halimeh, Philipp Hauke, and Debasish Banerjee, “Toward the continuum limit of a (1+1)D11D(1+1)\mathrm{D}( 1 + 1 ) roman_D quantum link schwinger model,” Phys. Rev. D 106, L091502 (2022).
- Jad C. Halimeh, Maarten Van Damme, Torsten V. Zache, Debasish Banerjee, and Philipp Hauke, “Achieving the quantum field theory limit in far-from-equilibrium quantum link models,” Quantum 6, 878 (2022a).
- Federica M. Surace, Paolo P. Mazza, Giuliano Giudici, Alessio Lerose, Andrea Gambassi, and Marcello Dalmonte, “Lattice gauge theories and string dynamics in Rydberg atom quantum simulators,” Phys. Rev. X 10, 021041 (2020).
- Jad C. Halimeh, Ian P. McCulloch, Bing Yang, and Philipp Hauke, “Tuning the topological θ𝜃\thetaitalic_θ-angle in cold-atom quantum simulators of gauge theories,” PRX Quantum 3, 040316 (2022b).
- Yanting Cheng, Shang Liu, Wei Zheng, Pengfei Zhang, and Hui Zhai, “Tunable confinement-deconfinement transition in an ultracold-atom quantum simulator,” PRX Quantum 3, 040317 (2022).
- Sidney Coleman, “More about the massive schwinger model,” Annals of Physics 101, 239 – 267 (1976).
- Kenneth G. Wilson, “Confinement of quarks,” Physical Review D 10, 2445–2459 (1974).
- Jad C. Halimeh, Robert Ott, Ian P. McCulloch, Bing Yang, and Philipp Hauke, “Robustness of gauge-invariant dynamics against defects in ultracold-atom gauge theories,” Phys. Rev. Research 2, 033361 (2020).
- S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Cambridge University Press, 1995).
- Philipp M. Preiss, Ruichao Ma, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Philip Zupancic, Yoav Lahini, Rajibul Islam, and Markus Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015), arXiv:1409.3100 .
- Christof Weitenberg, Manuel Endres, Jacob F. Sherson, Marc Cheneau, Peter Schausz, Takeshi Fukuhara, Immanuel Bloch, and Stefan Kuhr, “Single-spin addressing in an atomic mott insulator,” Nature 471, 319–324 (2011).
- Rajibul Islam, Ruichao Ma, Philipp M Preiss, M. Eric Tai, Alexander Lukin, Matthew Rispoli, and Markus Greiner, “Measuring entanglement entropy in a quantum many-body system,” Nature 528, 77–83 (2015), arXiv:1509.01160 .
- Bing Yang, Hui Sun, Chun-Jiong Huang, Han-Yi Wang, Youjin Deng, Han-Ning Dai, Zhen-Sheng Yuan, and Jian-Wei Pan, “Cooling and entangling ultracold atoms in optical lattices,” Science 369, 550–553 (2020b), arXiv:1901.01146 .
- Zhiyuan Yao, Lei Pan, Shang Liu, and Hui Zhai, “Quantum many-body scars and quantum criticality,” Physical Review B 105, 125123 (2022).
- C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, “Weak ergodicity breaking from quantum many-body scars,” Nature Physics 14, 745–749 (2018a).
- Jesse Osborne, Ian P. McCulloch, Bing Yang, Philipp Hauke, and Jad C. Halimeh, “Large-scale 2+1212+12 + 1d U(1)U1\mathrm{U}(1)roman_U ( 1 ) gauge theory with dynamical matter in a cold-atom quantum simulator,” (2022), arXiv:2211.01380 [cond-mat.quant-gas] .
- Jesse Osborne, Bing Yang, Ian P. McCulloch, Philipp Hauke, and Jad C. Halimeh, “Spin-S𝑆Sitalic_S U(1)U1\mathrm{U}(1)roman_U ( 1 ) quantum link models with dynamical matter on a quantum simulator,” (2023), arXiv:2305.06368 [cond-mat.quant-gas] .
- F. Hebenstreit, J. Berges, and D. Gelfand, “Real-time dynamics of string breaking,” Phys. Rev. Lett. 111, 201601 (2013a).
- F. Hebenstreit, J. Berges, and D. Gelfand, “Simulating fermion production in 1+1111\mathbf{+}11 + 1 dimensional qed,” Phys. Rev. D 87, 105006 (2013b).
- André Eckardt, “Colloquium: Atomic quantum gases in periodically driven optical lattices,” Reviews of Modern Physics 89, 011004 (2017).
- M Aidelsburger, M Atala, M Lohse, J T Barreiro, B Paredes, and I Bloch, “Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices,” Physical Review Letters 111, 185301 (2013).
- Julian Léonard, Sooshin Kim, Joyce Kwan, Perrin Segura, Fabian Grusdt, Cécile Repellin, Nathan Goldman, and Markus Greiner, “Realization of a fractional quantum Hall state with ultracold atoms,” Nature 619, 495–499 (2023).
- Michael Lohse, Christian Schweizer, Oded Zilberberg, Monika Aidelsburger, and Immanuel Bloch, “A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice,” Nature Physics 12, 350–354 (2016), arXiv:1507.02225 .
- Joaquín Minguzzi, Zijie Zhu, Kilian Sandholzer, Anne-sophie Walter, Konrad Viebahn, and Tilman Esslinger, “Topological Pumping in a Floquet-Bloch Band,” Physical Review Letters 129, 53201 (2022).
- Anne-sophie Walter, Zijie Zhu, Marius Gächter, Joaquín Minguzzi, Stephan Roschinski, Kilian Sandholzer, Konrad Viebahn, and Tilman Esslinger, “Quantization and its breakdown in a Hubbard–Thouless pump,” Nature Physics 19, 1471–1475 (2023).
- David Wei, Antonio Rubio-Abadal, Bingtian Ye, Francisco Machado, Jack Kemp, Kritsana Srakaew, Simon Hollerith, Jun Rui, Sarang Gopalakrishnan, Norman Y Yao, Immanuel Bloch, and Johannes Zeiher, “Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion,” Science 376, 716–720 (2022), arXiv:2107.00038 .
- W L Tan, P Becker, F Liu, G Pagano, K S Collins, A. De, L Feng, H B Kaplan, A Kyprianidis, R Lundgren, W Morong, S Whitsitt, A V Gorshkov, and C Monroe, “Domain-wall confinement and dynamics in a quantum simulator,” Nature Physics 17, 742–747 (2021).
- Joyce Kwan, Perrin Segura, Yanfei Li, Sooshin Kim, Alexey V Gorshkov, Brice Bakkali-hassani, and Markus Greiner, “Realization of 1D Anyons with Arbitrary Statistical Phase,” (2023), arXiv:2306.01737v1 .
- Guifré Vidal, “Efficient simulation of one-dimensional quantum many-body systems,” Phys. Rev. Lett. 93, 040502 (2004).
- Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pižorn, Henri Verschelde, and Frank Verstraete, “Time-dependent variational principle for quantum lattices,” Phys. Rev. Lett. 107, 070601 (2011).
- Jutho Haegeman, Christian Lubich, Ivan Oseledets, Bart Vandereycken, and Frank Verstraete, “Unifying time evolution and optimization with matrix product states,” Phys. Rev. B 94, 165116 (2016).
- Jutho Haegeman, Bogdan Pirvu, David J. Weir, J. Ignacio Cirac, Tobias J. Osborne, Henri Verschelde, and Frank Verstraete, “Variational matrix product ansatz for dispersion relations,” Phys. Rev. B 85, 100408 (2012).
- S. B. Rutkevich, “Energy spectrum of bound-spinons in the quantum ising spin-chain ferromagnet,” Journal of Statistical Physics 131, 917–939 (2008).