An Unobtrusive and Lightweight Ear-worn System for Continuous Epileptic Seizure Detection (2401.05425v2)
Abstract: Epilepsy is one of the most common neurological diseases globally (around 50 million people worldwide). Fortunately, up to 70% of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The scalp-based EEG test, despite being the gold standard for diagnosing epilepsy, is costly, necessitates hospitalization, demands skilled professionals for operation, and is discomforting for users. In this paper, we propose EarSD, a novel lightweight, unobtrusive, and socially acceptable ear-worn system to detect epileptic seizure onsets by measuring the physiological signals from behind the user's ears. EarSD includes an integrated custom-built sensing-computing-communication PCB to collect and amplify the signals of interest, remove the noises caused by motion artifacts and environmental impacts, and stream the data wirelessly to the computer/mobile phone nearby, where data are uploaded to the host computer for further processing. We conducted both in-lab and in-hospital experiments with epileptic seizure patients who were hospitalized for seizure studies.
- “Epilepsy,” https://www.who.int/news-room/fact-sheets/detail/epilepsy, accessed: 2023-11-02.
- R. Barranco, F. Caputo, A. Molinelli, and F. Ventura, “Review on post-mortem diagnosis in suspected SUDEP: Currently still a difficult task for Forensic Pathologists,” Journal of Forensic and Legal Medicine, vol. 70, p. 101920, Feb. 2020.
- B. Blachut, C. Hoppe, R. Surges, C. Elger, and C. Helmstaedter, “Subjective seizure counts by epilepsy clinical drug trial participants are not reliable,” Epilepsy & Behavior: E&B, vol. 67, pp. 122–127, Feb. 2017.
- P. F. Prior, R. S. M. Virden, and D. E. Maynard, “An eeg device for monitoring seizure discharges,” Epilepsia, vol. 14, 1973. [Online]. Available: https://api.semanticscholar.org/CorpusID:33586341
- A. H. Shoeb and J. Guttag, “Application of Machine Learning To Epileptic Seizure Detection,” in 2010 International Conference on Machine Learning (ICML), Jun. 2010. [Online]. Available: https://www.semanticscholar.org/paper/Application-of-Machine-Learning-To-Epileptic-Shoeb-Guttag/57e4afe9ca74414fa02f2e0a929b64dc9a03334d
- A. S. Zandi, M. Javidan, G. A. Dumont, and R. Tafreshi, “Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform,” IEEE transactions on bio-medical engineering, vol. 57, no. 7, pp. 1639–1651, Jul. 2010.
- O. M. Doyle, A. Temko, W. Marnane, G. Lightbody, and G. B. Boylan, “Heart rate based automatic seizure detection in the newborn,” Medical Engineering & Physics, vol. 32, no. 8, pp. 829–839, Oct. 2010.
- K. Jansen, C. Varon, S. Van Huffel, and L. Lagae, “Peri-ictal ECG changes in childhood epilepsy: implications for detection systems,” Epilepsy & Behavior: E&B, vol. 29, no. 1, pp. 72–76, Oct. 2013.
- K. Vandecasteele, T. De Cooman, C. Chatzichristos, E. Cleeren, L. Swinnen, J. Macea Ortiz, S. Van Huffel, M. Dümpelmann, A. Schulze-Bonhage, M. De Vos, W. Van Paesschen, and B. Hunyadi, “The power of ECG in multimodal patient-specific seizure monitoring: Added value to an EEG-based detector using limited channels,” Epilepsia, vol. 62, no. 10, pp. 2333–2343, Oct. 2021.
- K. Vandecasteele, T. De Cooman, Y. Gu, E. Cleeren, K. Claes, W. V. Paesschen, S. V. Huffel, and B. Hunyadi, “Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment,” Sensors (Basel, Switzerland), vol. 17, no. 10, p. 2338, Oct. 2017.
- S. Beniczky, I. Conradsen, and P. Wolf, “Detection of convulsive seizures using surface electromyography,” Epilepsia, vol. 59 Suppl 1, pp. 23–29, Jun. 2018.
- C. Bagavathi, S. M, S. M. Nair, and S. R, “Novel Epileptic Detection System using Portable EMG-based Assistance,” in 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), May 2022, pp. 1762–1765. [Online]. Available: https://ieeexplore.ieee.org/document/9793109
- A. Djemal, D. Bouchaala, A. Fakhfakh, and O. Kanoun, “Wearable Electromyography Classification of Epileptic Seizures: A Feasibility Study,” Bioengineering, vol. 10, no. 6, p. 703, Jun. 2023, number: 6 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2306-5354/10/6/703
- S. Ganesan, T. A. A. Victoire, and R. Ganesan, “EDA based automatic detection of epileptic seizures using wireless system,” in 2011 International Conference on Electronics, Communication and Computing Technologies, Sep. 2011, pp. 47–52. [Online]. Available: https://ieeexplore.ieee.org/document/6077068
- M.-Z. Poh, T. Loddenkemper, C. Reinsberger, N. C. Swenson, S. Goyal, M. C. Sabtala, J. R. Madsen, and R. W. Picard, “Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor,” Epilepsia, vol. 53, no. 5, pp. e93–97, May 2012.
- “Embrace2 Seizure Monitoring | Smarter Epilepsy Management | Embrace Watch,” https://www.empatica.com/embrace2/, accessed: 2023-11-02.
- Z. Liang and T. Nishimura, “Are wearable EEG devices more accurate than fitness wristbands for home sleep Tracking? Comparison of consumer sleep trackers with clinical devices,” in 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Oct. 2017, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8229188
- K. O’Hearn, M. Asato, S. Ordaz, and B. Luna, “Neurodevelopment and executive function in autism,” Development and psychopathology, vol. 20, pp. 1103–32, Feb. 2008.
- D. Bathgate, J. S. Snowden, A. Varma, A. Blackshaw, and D. Neary, “Behaviour in frontotemporal dementia, Alzheimer’s disease and vascular dementia,” Acta Neurologica Scandinavica, vol. 103, no. 6, pp. 367–378, 2001, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1600-0404.2001.2000236.x. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1600-0404.2001.2000236.x
- H. Truong, N. Bui, Z. Raghebi, M. Ceko, N. Pham, P. Nguyen, A. Nguyen, T. Kim, K. Siegfried, E. Stene, T. Tvrdy, L. Weinman, T. Payne, D. Burke, T. Dinh, S. D’Mello, F. Banaei-Kashani, T. Wager, P. Goldstein, and T. Vu, “Painometry: Wearable and objective quantification system for acute postoperative pain,” in Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services, ser. MobiSys ’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 419–433. [Online]. Available: https://doi.org/10.1145/3386901.3389022
- “Video EEG Test,” https://www.epilepsy.com/diagnosis/eeg/video-eeg, accessed: 2023-11-02.
- “Persyst: The worldwide leader in EEG software,” https://www.persyst.com/, accessed: 2023-11-02.
- T. L. Babb, E. Mariani, and P. H. Crandall, “An electronic circuit for detection of EEG seizures recorded with implanted electrodes,” Electroencephalography and Clinical Neurophysiology, vol. 37, no. 3, pp. 305–308, Sep. 1974. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0013469474900364
- M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagić, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, vol. 38, no. 5, pp. 439–447, Sep. 2021.
- A. Shoeibi, M. Khodatars, N. Ghassemi, M. Jafari, P. Moridian, R. Alizadehsani, M. Panahiazar, F. Khozeimeh, A. Zare, H. Hosseini-Nejad, A. Khosravi, A. F. Atiya, D. Aminshahidi, S. Hussain, M. Rouhani, S. Nahavandi, and U. R. Acharya, “Epileptic Seizures Detection Using Deep Learning Techniques: A Review,” International Journal of Environmental Research and Public Health, vol. 18, no. 11, p. 5780, May 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199071/
- U. Asif, S. Roy, J. Tang, and S. Harrer, “SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification,” Sep. 2020, arXiv:1903.03232 [cs, q-bio, stat]. [Online]. Available: http://arxiv.org/abs/1903.03232
- S. Tang, J. A. Dunnmon, K. Saab, X. Zhang, Q. Huang, F. Dubost, D. L. Rubin, and C. Lee-Messer, “Self-Supervised Graph Neural Networks for Improved Electroencephalographic Seizure Analysis,” Mar. 2022, arXiv:2104.08336 [cs, eess]. [Online]. Available: http://arxiv.org/abs/2104.08336
- S. Roy, U. Asif, J. Tang, and S. Harrer, “Seizure Type Classification Using EEG Signals and Machine Learning: Setting a Benchmark,” in 2020 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Dec. 2020, pp. 1–6, iSSN: 2473-716X. [Online]. Available: https://ieeexplore.ieee.org/document/9353642
- I. R. D. Saputro, N. D. Maryati, S. R. Solihati, I. Wijayanto, S. Hadiyoso, and R. Patmasari, “Seizure Type Classification on EEG Signal using Support Vector Machine,” Journal of Physics: Conference Series, vol. 1201, no. 1, p. 012065, May 2019, publisher: IOP Publishing. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1201/1/012065
- I. Wijayanto, R. Hartanto, H. A. Nugroho, and B. Winduratna, “Seizure Type Detection in Epileptic EEG Signal using Empirical Mode Decomposition and Support Vector Machine,” in 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA), Aug. 2019, pp. 314–319. [Online]. Available: https://ieeexplore.ieee.org/document/8937205
- V. Shah, E. von Weltin, S. Lopez, J. R. McHugh, L. Veloso, M. Golmohammadi, I. Obeid, and J. Picone, “The Temple University Hospital Seizure Detection Corpus,” Frontiers in Neuroinformatics, vol. 12, 2018. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fninf.2018.00083
- S. C. Joshi, G. C. Jana, and A. Agrawal, “A Multi-view Representation Learning Approach for Seizure Detection Over Multi-channel EEG Signals,” in Intelligent Data Engineering and Analytics, ser. Smart Innovation, Systems and Technologies, V. Bhateja, X.-S. Yang, J. Chun-Wei Lin, and R. Das, Eds. Singapore: Springer Nature, 2023, pp. 375–385.
- A. H. Shoeb, “Application of machine learning to epileptic seizure onset detection and treatment,” Thesis, Massachusetts Institute of Technology, 2009, accepted: 2010-04-28T17:17:43Z. [Online]. Available: https://dspace.mit.edu/handle/1721.1/54669
- S. Madhavan, R. K. Tripathy, and R. B. Pachori, “Time-Frequency Domain Deep Convolutional Neural Network for the Classification of Focal and Non-Focal EEG Signals,” IEEE Sensors Journal, vol. 20, no. 6, pp. 3078–3086, Mar. 2020, conference Name: IEEE Sensors Journal. [Online]. Available: https://ieeexplore.ieee.org/document/8913620
- T. Kim, P. Nguyen, N. Pham, N. Bui, H. Truong, S. Ha, and T. Vu, “Epileptic Seizure Detection and Experimental Treatment: A Review,” Frontiers in Neurology, vol. 11, 2020. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fneur.2020.00701
- C. A. Szabo’, L. C. Morgan, K. M. Karkar, L. D. Leary, O. V. Lie, M. Girouard, and J. E. Cavazos, “Electromyography-based seizure detector: Preliminary results comparing a generalized tonic-clonic seizure detection algorithm to video-EEG recordings,” Epilepsia, vol. 56, no. 9, pp. 1432–1437, Sep. 2015.
- F. Massé, M. V. Bussel, A. Serteyn, J. Arends, and J. Penders, “Miniaturized wireless ECG monitor for real-time detection of epileptic seizures,” ACM Transactions on Embedded Computing Systems, vol. 12, no. 4, pp. 102:1–102:21, Jul. 2013. [Online]. Available: https://dl.acm.org/doi/10.1145/2485984.2485990
- J. Jeppesen, A. Fuglsang-Frederiksen, P. Johansen, J. Christensen, S. Wüstenhagen, H. Tankisi, E. Qerama, A. Hess, and S. Beniczky, “Seizure detection based on heart rate variability using a wearable electrocardiography device,” Epilepsia, vol. 60, no. 10, pp. 2105–2113, Oct. 2019.
- M. Savadkoohi, T. Oladunni, and L. Thompson, “A machine learning approach to epileptic seizure prediction using Electroencephalogram (EEG) Signal,” Biocybernetics and Biomedical Engineering, vol. 40, no. 3, pp. 1328–1341, Jul. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0208521620300851
- L. V. Tran, H. M. Tran, T. M. Le, T. T. M. Huynh, H. T. Tran, and S. V. T. Dao, “Application of Machine Learning in Epileptic Seizure Detection,” Diagnostics (Basel, Switzerland), vol. 12, no. 11, p. 2879, Nov. 2022.
- D. K. Atal and M. Singh, “Effectual seizure detection using MBBF-GPSO with CNN network,” Cognitive Neurodynamics, Feb. 2023. [Online]. Available: https://doi.org/10.1007/s11571-023-09943-1
- J. Askamp and M. J. A. M. van Putten, “Mobile EEG in epilepsy,” International Journal of Psychophysiology, vol. 91, no. 1, pp. 30–35, Jan. 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167876013002523
- J. Duun-Henriksen, M. Baud, M. P. Richardson, M. Cook, G. Kouvas, J. M. Heasman, D. Friedman, J. Peltola, I. C. Zibrandtsen, and T. W. Kjaer, “A new era in electroencephalographic monitoring? Subscalp devices for ultra-long-term recordings,” Epilepsia, vol. 61, no. 9, pp. 1805–1817, Sep. 2020.
- B. G. Do Valle, S. S. Cash, and C. G. Sodini, “Wireless behind-the-ear EEG recording device with wireless interface to a mobile device (iPhone/iPod touch),” Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, vol. 2014, pp. 5952–5955, 2014.
- M. EL Menshawy, A. Benharref, and M. Serhani, “An automatic mobile-health based approach for EEG epileptic seizures detection,” Expert Systems with Applications, vol. 42, no. 20, pp. 7157–7174, Nov. 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957417415003103
- A. Biondi, V. Santoro, P. F. Viana, P. Laiou, D. K. Pal, E. Bruno, and M. P. Richardson, “Noninvasive mobile EEG as a tool for seizure monitoring and management: A systematic review,” Epilepsia, vol. 63, no. 5, pp. 1041–1063, 2022, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/epi.17220. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.17220
- V. Mihajlović, B. Grundlehner, R. Vullers, and J. Penders, “Wearable, Wireless EEG Solutions in Daily Life Applications: What are we Missing?” IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 1, pp. 6–21, Jan. 2015, conference Name: IEEE Journal of Biomedical and Health Informatics. [Online]. Available: https://ieeexplore.ieee.org/document/6824740
- “Remi,” https://www.epitel.com/, accessed: 2023-11-02.
- “Epihunter,” https://www.epihunter.com/, accessed: 2023-11-02.
- “EEG - Electroencephalography - BCI | NeuroSky,” https://neurosky.com/biosensors/eeg-sensor/, accessed: 2023-11-02.
- M. A. Frankel, M. J. Lehmkuhle, M. Watson, K. Fetrow, L. Frey, C. Drees, and M. C. Spitz, “Electrographic seizure monitoring with a novel, wireless, single-channel EEG sensor,” Clinical Neurophysiology Practice, vol. 6, pp. 172–178, Jan. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2467981X2100024X
- “Ceribell Rapid Response EEG,” https://ceribell.com/, accessed: 2023-11-02.
- S. Beniczky, I. Conradsen, O. Henning, M. Fabricius, and P. Wolf, “Automated real-time detection of tonic-clonic seizures using a wearable EMG device,” Neurology, vol. 90, no. 5, pp. e428–e434, Jan. 2018, publisher: Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology Section: Article. [Online]. Available: https://n.neurology.org/content/90/5/e428
- F. S. S. Leijten and Dutch TeleEpilepsy Consortium, “Multimodal seizure detection: A review,” Epilepsia, vol. 59 Suppl 1, pp. 42–47, Jun. 2018.
- A. B. Usakli, “Improvement of EEG Signal Acquisition: An Electrical Aspect for State of the Art of Front End,” Computational Intelligence and Neuroscience, vol. 2010, p. e630649, Feb. 2010, publisher: Hindawi. [Online]. Available: https://www.hindawi.com/journals/cin/2010/630649/
- P. Kidmose, D. Looney, M. Ungstrup, M. L. Rank, and D. P. Mandic, “A Study of Evoked Potentials From Ear-EEG,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 10, pp. 2824–2830, Oct. 2013, conference Name: IEEE Transactions on Biomedical Engineering. [Online]. Available: https://ieeexplore.ieee.org/document/6521411
- M. G. Bleichner and S. Debener, “Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG,” Frontiers in Human Neuroscience, vol. 11, 2017. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnhum.2017.00163
- I. C. Zibrandtsen, P. Kidmose, C. B. Christensen, and T. W. Kjaer, “Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy – A comparison with scalp EEG monitoring,” Clinical Neurophysiology, vol. 128, no. 12, pp. 2454–2461, Dec. 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1388245717310763
- K. Vandecasteele, T. De Cooman, J. Dan, E. Cleeren, S. Van Huffel, B. Hunyadi, and W. Van Paesschen, “Visual seizure annotation and automated seizure detection using behind-the-ear electroencephalographic channels,” Epilepsia, vol. 61, no. 4, pp. 766–775, 2020, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/epi.16470. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16470
- A. Meiser and M. G. Bleichner, “Ear-EEG compares well to cap-EEG in recording auditory ERPs: a quantification of signal loss,” Journal of Neural Engineering, vol. 19, no. 2, p. 026042, Apr. 2022, publisher: IOP Publishing. [Online]. Available: https://dx.doi.org/10.1088/1741-2552/ac5fcb
- J.-T. Chien, “Chapter 4 - Independent Component Analysis,” in Source Separation and Machine Learning, J.-T. Chien, Ed. Academic Press, Jan. 2019, pp. 99–160. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128045664000164
- J. Xu, S. Mitra, C. Van Hoof, R. F. Yazicioglu, and K. A. A. Makinwa, “Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology,” IEEE reviews in biomedical engineering, vol. 10, pp. 187–198, 2017.
- J. D. Reiss, “UNDERSTANDING SIGMA–DELTA MODULATION:,” J. Audio Eng. Soc., vol. 56, no. 1, 2008.
- K. Dragomiretskiy and D. Zosso, “Variational Mode Decomposition,” IEEE Transactions on Signal Processing, vol. 62, no. 3, pp. 531–544, Feb. 2014, conference Name: IEEE Transactions on Signal Processing. [Online]. Available: https://ieeexplore.ieee.org/document/6655981
- N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903–995, Mar. 1998, publisher: Royal Society. [Online]. Available: https://royalsocietypublishing.org/doi/10.1098/rspa.1998.0193
- J. Chen, Y. Huang, and J. Benesty, “Filtering Techniques for Noise Reduction and Speech Enhancement,” in Adaptive Signal Processing: Applications to Real-World Problems, ser. Signals and Communication Technology, J. Benesty and Y. Huang, Eds. Berlin, Heidelberg: Springer, 2003, pp. 129–154. [Online]. Available: https://doi.org/10.1007/978-3-662-11028-7_5
- D. Butusov, T. Karimov, A. Voznesenskiy, D. Kaplun, V. Andreev, and V. Ostrovskii, “Filtering Techniques for Chaotic Signal Processing,” Electronics, vol. 7, no. 12, p. 450, Dec. 2018, number: 12 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-9292/7/12/450
- J. V. Stone, “Independent component analysis: an introduction,” Trends in Cognitive Sciences, vol. 6, no. 2, pp. 59–64, Feb. 2002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364661300018131
- G. Naik and D. Kumar, “An Overview of Independent Component Analysis and Its Applications,” Informatica, vol. 35, pp. 63–81, Jan. 2011.
- H. Kasban, H. Arafa, and S. M. S. Elaraby, “Principle component analysis for radiotracer signal separation,” Applied Radiation and Isotopes, vol. 112, pp. 20–26, Jun. 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0969804316300896
- M. A. Kass and Y. Li, “Use of principal component analysis in the de-noising and signal- separation of transient electromagnetic data,” 2007. [Online]. Available: https://api.semanticscholar.org/CorpusID:17798116
- G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and its algorithms,” Jun. 2003. [Online]. Available: https://www.semanticscholar.org/paper/On-empirical-mode-decomposition-and-its-algorithms-Rilling-Flandrin/3f616db40f5da4446a039bb6ae5d801d4c616f2b
- G. Wang, X.-Y. Chen, F.-L. Qiao, Z. Wu, and N. E. Huang, “On intrinsic mode function,” Advances in Adaptive Data Analysis, vol. 02, no. 03, pp. 277–293, Jul. 2010, publisher: World Scientific Publishing Co. [Online]. Available: https://www.worldscientific.com/doi/abs/10.1142/S1793536910000549
- D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, Oct. 1999, number: 6755 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/44565
- F. Segovia, J. M. Górriz, J. Ramírez, F. J. Martinez-Murcia, and M. García-Pérez, “Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders,” Logic Journal of the IGPL, vol. 26, no. 6, pp. 618–628, Nov. 2018. [Online]. Available: https://doi.org/10.1093/jigpal/jzy026
- S. Krause-Solberg, “Non-Negative Dimensionality Reduction in Signal Separation,” doctoralThesis, Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2015, accepted: 2020-10-19T13:15:27Z Journal Abbreviation: Anwendung von nichtnegativer Dimensionsreduktion im Bereich der Signaltrennung. [Online]. Available: https://ediss.sub.uni-hamburg.de/handle/ediss/6859
- B. Karan, S. S. Sahu, J. R. Orozco-Arroyave, and K. Mahto, “Non-negative matrix factorization-based time-frequency feature extraction of voice signal for Parkinson’s disease prediction,” Computer Speech & Language, vol. 69, p. 101216, Sep. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0885230821000231
- Y. Yi, Y. Shi, H. Zhang, J. Wang, and J. Kong, “Label propagation based semi-supervised non-negative matrix factorization for feature extraction,” Neurocomputing, vol. 149, pp. 1021–1037, Feb. 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231214009680
- E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in blind audio source separation,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 4, pp. 1462–1469, Jul. 2006, conference Name: IEEE Transactions on Audio, Speech, and Language Processing. [Online]. Available: https://ieeexplore.ieee.org/document/1643671
- C. Ye, K. Toyoda, and T. Ohtsuki, “Blind Source Separation on Non-Contact Heartbeat Detection by Non-Negative Matrix Factorization Algorithms,” IEEE Transactions on Biomedical Engineering, vol. 67, no. 2, pp. 482–494, Feb. 2020, conference Name: IEEE Transactions on Biomedical Engineering. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8710248
- A. Cichocki, R. Zdunek, and S. Amari, “New Algorithms for Non-Negative Matrix Factorization in Applications to Blind Source Separation,” in 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 5, May 2006, pp. V–V, iSSN: 2379-190X. [Online]. Available: https://ieeexplore.ieee.org/document/1661352
- B. S. Alexandrov and V. V. Vesselinov, “Blind source separation for groundwater pressure analysis based on nonnegative matrix factorization,” Water Resources Research, vol. 50, no. 9, pp. 7332–7347, 2014, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2013WR015037. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/2013WR015037
- A. Rolet, V. Seguy, M. Blondel, and H. Sawada, “Blind source separation with optimal transport non-negative matrix factorization,” EURASIP Journal on Advances in Signal Processing, vol. 2018, no. 1, p. 53, Sep. 2018. [Online]. Available: https://doi.org/10.1186/s13634-018-0576-2
- L. Jing, C. Zhang, and M. K. Ng, “SNMFCA: Supervised NMF-Based Image Classification and Annotation,” IEEE Transactions on Image Processing, vol. 21, no. 11, pp. 4508–4521, Nov. 2012, conference Name: IEEE Transactions on Image Processing. [Online]. Available: https://ieeexplore.ieee.org/document/6226461
- C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis,” Neural Computation, vol. 21, no. 3, pp. 793–830, Mar. 2009. [Online]. Available: https://doi.org/10.1162/neco.2008.04-08-771
- V. Leplat, N. Gillis, and J. Idier, “Multiplicative Updates for NMF with $\beta$-Divergences under Disjoint Equality Constraints,” SIAM Journal on Matrix Analysis and Applications, vol. 42, no. 2, pp. 730–752, Jan. 2021, publisher: Society for Industrial and Applied Mathematics. [Online]. Available: https://epubs.siam.org/doi/abs/10.1137/20M1377278
- C. Févotte and J. Idier, “Algorithms for Nonnegative Matrix Factorization with the Beta-Divergence,” Neural Computation, vol. 23, no. 9, pp. 2421–2456, Sep. 2011. [Online]. Available: https://doi.org/10.1162/NECO_a_00168
- N. N. E. Software, “Natus® NeuroWorks® EEG Software,” Nov. 2023. [Online]. Available: https://natus.com/neuro/neuroworks-eeg-software/
- L. J. Hirsch, M. W. Fong, M. Leitinger, S. M. LaRoche, S. Beniczky, N. S. Abend, J. W. Lee, C. J. Wusthoff, C. D. Hahn, M. B. Westover, E. E. Gerard, S. T. Herman, H. A. Haider, G. Osman, A. Rodriguez-Ruiz, C. B. Maciel, E. J. Gilmore, A. Fernandez, E. S. Rosenthal, J. Claassen, A. M. Husain, J. Y. Yoo, E. L. So, P. W. Kaplan, M. R. Nuwer, M. van Putten, R. Sutter, F. W. Drislane, E. Trinka, and N. Gaspard, “American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2021 Version,” Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society, vol. 38, no. 1, pp. 1–29, Jan. 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8135051/
- X. Zhao, N. Yoshida, T. Ueda, H. Sugano, and T. Tanaka, “Epileptic seizure detection by using interpretable machine learning models,” Journal of Neural Engineering, vol. 20, no. 1, p. 015002, Feb. 2023, publisher: IOP Publishing. [Online]. Available: https://dx.doi.org/10.1088/1741-2552/acb089
- Z. Sawadogo, G. Mendy, J. M. Dembele, and S. Ouya, “Android malware detection: Investigating the impact of imbalanced data-sets on the performance of machine learning models,” in 2022 24th International Conference on Advanced Communication Technology (ICACT), Feb. 2022, pp. 435–441, iSSN: 1738-9445. [Online]. Available: https://ieeexplore.ieee.org/document/9728833
- O. Medical, “Visensia,” 2023. [Online]. Available: https://www.obsmedical.com/visensia-the-safety-index/
- B. Company Inc., “BrainScope,” Nov. 2023. [Online]. Available: https://www.brainscope.com