Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Most discriminative stimuli for functional cell type clustering (2401.05342v2)

Published 29 Nov 2023 in q-bio.NC, cs.AI, and cs.LG

Abstract: Identifying cell types and understanding their functional properties is crucial for unraveling the mechanisms underlying perception and cognition. In the retina, functional types can be identified by carefully selected stimuli, but this requires expert domain knowledge and biases the procedure towards previously known cell types. In the visual cortex, it is still unknown what functional types exist and how to identify them. Thus, for unbiased identification of the functional cell types in retina and visual cortex, new approaches are needed. Here we propose an optimization-based clustering approach using deep predictive models to obtain functional clusters of neurons using Most Discriminative Stimuli (MDS). Our approach alternates between stimulus optimization with cluster reassignment akin to an expectation-maximization algorithm. The algorithm recovers functional clusters in mouse retina, marmoset retina and macaque visual area V4. This demonstrates that our approach can successfully find discriminative stimuli across species, stages of the visual system and recording techniques. The resulting most discriminative stimuli can be used to assign functional cell types fast and on the fly, without the need to train complex predictive models or show a large natural scene dataset, paving the way for experiments that were previously limited by experimental time. Crucially, MDS are interpretable: they visualize the distinctive stimulus patterns that most unambiguously identify a specific type of neuron.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science, 371(6528):eaax2656, 2021.
  2. Model constrained by visual hierarchy improves prediction of neural responses to natural scenes. PLoS Computational Biology, 12(6):e1004927, 2016.
  3. k-means++: the advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’07, pp.  1027–1035, USA, January 2007. Society for Industrial and Applied Mathematics. ISBN 978-0-89871-624-5.
  4. The functional diversity of retinal ganglion cells in the mouse. Nature, 529(7586):345–350, January 2016. ISSN 0028-0836, 1476-4687. doi: 10.1038/nature16468. URL http://www.nature.com/articles/nature16468.
  5. Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell, 173(5):1293–1306, 2018.
  6. Neural population control via deep image synthesis. Science, 364(6439):eaav9436, May 2019. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.aav9436. URL https://science.sciencemag.org/content/364/6439/eaav9436.
  7. Multilayer recurrent network models of primate retinal ganglion cell responses. In International Conference on Learning Representations, 2016.
  8. Diverse Feature Visualizations Reveal Invariances in Early Layers of Deep Neural Networks. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (eds.), Computer Vision – ECCV 2018, volume 11216, pp. 225–240. Springer International Publishing, Cham, 2018. ISBN 978-3-030-01257-1 978-3-030-01258-8. doi: 10.1007/978-3-030-01258-8˙14. URL http://link.springer.com/10.1007/978-3-030-01258-8_14.
  9. Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.
  10. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pp.  248–255. Ieee, 2009.
  11. Bipartite invariance in mouse primary visual cortex. preprint, Neuroscience, March 2023. URL http://biorxiv.org/lookup/doi/10.1101/2023.03.15.532836.
  12. Visualizing higher-layer features of a deep network. University of Montreal, 1341(3):1, 2009.
  13. Physiological clustering of visual channels in the mouse retina. Journal of neurophysiology, 105(4):1516–1530, 2011.
  14. Information processing in the primate retina: Circuitry and coding. Annual Review of Neuroscience, 30(1):1–30, 2007. doi: 10.1146/annurev.neuro.30.051606.094252. URL https://doi.org/10.1146/annurev.neuro.30.051606.094252. PMID: 17335403.
  15. Inhibition decorrelates visual feature representations in the inner retina. Nature, 542(7642):439–444, 2017.
  16. State-dependent pupil dilation rapidly shifts visual feature selectivity. Nature, 610(7930):128–134, October 2022. ISSN 1476-4687. doi: 10.1038/s41586-022-05270-3. URL https://www.nature.com/articles/s41586-022-05270-3. Number: 7930 Publisher: Nature Publishing Group.
  17. Pattern completion and disruption characterize contextual modulation in mouse visual cortex. preprint, Neuroscience, March 2023. URL http://biorxiv.org/lookup/doi/10.1101/2023.03.13.532473.
  18. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell reports, 40(2), 2022.
  19. Controversial stimuli: Pitting neural networks against each other as models of human cognition. Proceedings of the National Academy of Sciences, 117(47):29330–29337, November 2020. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1912334117. URL http://www.pnas.org/lookup/doi/10.1073/pnas.1912334117.
  20. Classes and continua of hippocampal ca1 inhibitory neurons revealed by single-cell transcriptomics. PLoS biology, 16(6):e2006387, 2018.
  21. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.  770–778, 2016.
  22. A chromatic feature detector in the retina signals visual context changes. preprint, Neuroscience, December 2022. URL http://biorxiv.org/lookup/doi/10.1101/2022.11.30.518492.
  23. Linking transcriptomes with morphological and functional phenotypes in mammalian retinal ganglion cells. Cell Reports, 40(11), 2022.
  24. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR, 2015.
  25. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.
  26. Neural system identification for large populations separating “ what” and “ where”. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp.  3506–3516. Curran Associates, Inc., 2017.
  27. Integrative analysis of in vivo recording with single-cell rna-seq data reveals molecular properties of light-sensitive neurons in mouse v1. Protein & cell, 11(6):417–432, 2020.
  28. Generalization in data-driven models of primary visual cortex. bioRxiv, 2020.
  29. Deep learning models of the retinal response to natural scenes. Advances in neural information processing systems, 29, 2016.
  30. Feature visualization. Distill, 2017. doi: 10.23915/distill.00007. URL https://distill.pub/2017/feature-visualization.
  31. Energy guided diffusion for generating neurally exciting images. bioRxiv, 2023. doi: 10.1101/2023.05.18.541176. URL https://www.biorxiv.org/content/early/2023/05/20/2023.05.18.541176.
  32. Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pp.  55–69. Springer, 2002.
  33. Efficient coding of natural scenes improves neural system identification. PLOS Computational Biology, 19(4):e1011037, April 2023. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1011037. URL https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011037. Publisher: Public Library of Science.
  34. Do adversarially robust imagenet models transfer better? In ArXiv preprint arXiv:2007.08489, 2020.
  35. The types of retinal ganglion cells: current status and implications for neuronal classification. Annual review of neuroscience, 38:221–246, 2015.
  36. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature, 598(7879):144–150, October 2021. ISSN 1476-4687. doi: 10.1038/s41586-020-2907-3. URL https://www.nature.com/articles/s41586-020-2907-3. Number: 7879 Publisher: Nature Publishing Group.
  37. Stimulus domain transfer in recurrent models for large scale cortical population prediction on video. preprint, Neuroscience, October 2018. URL http://biorxiv.org/lookup/doi/10.1101/452672.
  38. Continuous and discrete neuron types of the adult murine striatum. Neuron, 105(4):688–699, 2020.
  39. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature neuroscience, 19(2):335–346, 2016.
  40. Shared and distinct transcriptomic cell types across neocortical areas. Nature, 563(7729):72–78, 2018.
  41. The feature landscape of visual cortex. bioRxiv, pp.  2023–11, 2023.
  42. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron, 104(6):1039–1055, 2019.
  43. The dynamic sensorium competition for predicting large-scale mouse visual cortex activity from videos. arXiv preprint arXiv:2305.19654, 2023.
  44. Rotation-invariant clustering of neuronal responses in primary visual cortex. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=rklr9kHFDB.
  45. Digital twin reveals combinatorial code of non-linear computations in the mouse primary visual cortex. preprint, Neuroscience, February 2022. URL http://biorxiv.org/lookup/doi/10.1101/2022.02.10.479884.
  46. Function first: classifying cell types and circuits of the retina. Current opinion in neurobiology, 56:8–15, 2019.
  47. Inception loops discover what excites neurons most using deep predictive models. Nature Neuroscience, 22(12):2060–2065, December 2019. ISSN 1097-6256, 1546-1726. doi: 10.1038/s41593-019-0517-x. URL http://www.nature.com/articles/s41593-019-0517-x.
  48. Towards a foundation model of the mouse visual cortex. bioRxiv, pp.  2023–03, 2023.
  49. The Sensorium competition on predicting large-scale mouse primary visual cortex activity, June 2022. URL http://arxiv.org/abs/2206.08666. arXiv:2206.08666 [cs, q-bio].
  50. Deep learning-driven characterization of single cell tuning in primate visual area V4 unveils topological organization. preprint, Neuroscience, May 2023. URL http://biorxiv.org/lookup/doi/10.1101/2023.05.12.540591.
  51. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23):8619–8624, June 2014. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1403112111. URL http://www.pnas.org/cgi/doi/10.1073/pnas.1403112111.
  52. Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13, pp. 818–833. Springer, 2014.
  53. The temporal structure of the inner retina at a single glance. Scientific reports, 10(1):4399, 2020.
Citations (2)

Summary

We haven't generated a summary for this paper yet.