Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analytical Model and Experimental Testing of the SoftFoot: an Adaptive Robot Foot for Walking over Obstacles and Irregular Terrains (2401.05318v2)

Published 10 Jan 2024 in cs.RO

Abstract: Robot feet are crucial for maintaining dynamic stability and propelling the body during walking, especially on uneven terrains. Traditionally, robot feet were mostly designed as flat and stiff pieces of metal, which meets its limitations when the robot is required to step on irregular grounds, e.g. stones. While one could think that adding compliance under such feet would solve the problem, this is not the case. To address this problem, we introduced the SoftFoot, an adaptive foot design that can enhance walking performance over irregular grounds. The proposed design is completely passive and varies its shape and stiffness based on the exerted forces, through a system of pulley, tendons, and springs opportunely placed in the structure. This paper outlines the motivation behind the SoftFoot and describes the theoretical model which led to its final design. The proposed system has been experimentally tested and compared with two analogous conventional feet, a rigid one and a compliant one, with similar footprints and soles. The experimental validation focuses on the analysis of the standing performance, measured in terms of the equivalent support surface extension and the compensatory ankle angle, and the rejection of impulsive forces, which is important in events such as stepping on unforeseen obstacles. Results show that the SoftFoot has the largest equivalent support surface when standing on obstacles, and absorbs impulsive loads in a way almost as good as a compliant foot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. 2006.
  2. M. Venkadesan, A. Yawar, C. M. Eng, M. A. Dias, D. K. Singh, S. M. Tommasini, A. H. Haims, M. M. Bandi, and S. Mandre, “Stiffness of the human foot and evolution of the transverse arch,” Nature, vol. 579, no. 7797, pp. 97–100, 2020.
  3. D. Torricelli, J. Gonzalez, M. Weckx, R. Jiménez-Fabián, B. Vanderborght, M. Sartori, S. Dosen, D. Farina, D. Lefeber, and J. L. Pons, “Human-like compliant locomotion: state of the art of robotic implementations,” Bioinspiration & biomimetics, vol. 11, no. 5, p. 051002, 2016.
  4. I. Frizza, K. Ayusawa, A. Cherubini, H. Kaminaga, P. Fraisse, and G. Venture, “Humanoids’ feet: State-of-the-art & future directions,” International Journal of Humanoid Robotics, vol. 19, no. 01, p. 2250001, 2022.
  5. M. Hutter, C. Gehring, A. Lauber, F. Gunther, C. D. Bellicoso, V. Tsounis, P. Fankhauser, R. Diethelm, S. Bachmann, M. Blösch, et al., “Anymal-toward legged robots for harsh environments,” Advanced Robotics, vol. 31, no. 17, pp. 918–931, 2017.
  6. A. Spröwitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, and A. J. Ijspeert, “Towards dynamic trot gait locomotion: Design, control, and experiments with cheetah-cub, a compliant quadruped robot,” The International Journal of Robotics Research, vol. 32, no. 8, pp. 932–950, 2013.
  7. “Boston dynamics website.” http://www.bostondynamics.com. Accessed: 2016-03-01.
  8. I.-W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh, “Mechanical design of humanoid robot platform khr-3 (kaist humanoid robot 3: Hubo),” in Humanoid Robots, 2005 5th IEEE-RAS International Conference on, pp. 321–326, IEEE, 2005.
  9. K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi, “Humanoid robot hrp-3,” in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pp. 2471–2478, IEEE, 2008.
  10. D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. O. Monceaux, P. Lafourcade, B. Marnier, J. Serre, and B. Maisonnier, “Mechatronic design of nao humanoid,” in Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pp. 769–774, IEEE, 2009.
  11. F. Negrello, M. Garabini, M. G. Catalano, P. Kryczka, W. Choi, D. Caldwell, A. Bicchi, and N. Tsagarakis, “Walk-man humanoid lower body design optimization for enhanced physical performance,” in Robotics and Automation, 2016. ICRA’16. IEEE International Conference on, 2016.
  12. T. Bretl and S. Lall, “Testing static equilibrium for legged robots,” IEEE Transactions on Robotics, vol. 24, no. 4, pp. 794–807, 2008.
  13. J. Li, Q. Huang, W. Zhang, Z. Yu, and K. Li, “Flexible foot design for a humanoid robot,” in Automation and Logistics, 2008. ICAL 2008. IEEE International Conference on, pp. 1414–1419, IEEE, 2008.
  14. A. Najmuddin, Y. Fukuoka, and S. Ochiai, “Experimental development of stiffness adjustable foot sole for use by bipedal robots walking on uneven terrain,” in System Integration (SII), 2012 IEEE/SICE International Symposium on, pp. 248–253, IEEE, 2012.
  15. N. G. Tsagarakis, Z. Li, J. Saglia, and D. G. Caldwell, “The design of the lower body of the compliant humanoid robot “ccub”,” in Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 2035–2040, IEEE, 2011.
  16. S. Davis and D. G. Caldwell, “The design of an anthropomorphic dexterous humanoid foot,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2200–2205, IEEE, 2010.
  17. H.-j. Kang, K. Hashimoto, H. Kondo, K. Hattori, K. Nishikawa, Y. Hama, H.-o. Lim, A. Takanishi, K. Suga, and K. Kato, “Realization of biped walking on uneven terrain by new foot mechanism capable of detecting ground surface,” in Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp. 5167–5172, IEEE, 2010.
  18. D. Kuehn, F. Beinersdorf, F. Bernhard, K. Fondahl, M. Schilling, M. Simnofske, T. Stark, and F. Kirchner, “Active spine and feet with increased sensing capabilities for walking robots,” in International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS-12), pp. 4–6, 2012.
  19. K. Narioka, T. Homma, and K. Hosoda, “Humanlike ankle-foot complex for a biped robot,” in 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 15–20, IEEE, 2012.
  20. J.-T. Seo and B.-J. Yi, “Modeling and analysis of a biomimetic foot mechanism,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1472–1477, IEEE, 2009.
  21. J. Yoon, H. Nandha, D. Lee, and G.-s. Kim, “A novel 4-dof robotic foot mechanism with multi-platforms for humanoid robot (sice-iccas 2006),” in 2006 SICE-ICASE International Joint Conference, pp. 3500–3504, IEEE, 2006.
  22. C. Piazza, G. Grioli, M. Catalano, and A. Bicchi, “A century of robotic hands,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, pp. 1–32, 2019.
  23. L. Paez, K. Melo, R. Thandiackal, and A. J. Ijspeert, “Adaptive compliant foot design for salamander robots,” in 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), pp. 178–185, IEEE, 2019.
  24. Y. Asano, S. Nakashima, T. Kozuki, S. Ookubo, I. Yanokura, Y. Kakiuchi, K. Okada, and M. Inaba, “Human mimetic foot structure with multi-dofs and multi-sensors for musculoskeletal humanoid kengoro,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2419–2424, IEEE, 2016.
  25. R. Käslin, H. Kolvenbach, L. Paez, K. Lika, and M. Hutter, “Towards a passive adaptive planar foot with ground orientation and contact force sensing for legged robots,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2707–2714, IEEE, 2018.
  26. S. Hauser, M. Mutlu, P. Banzet, and A. J. Ijspeert, “Compliant universal grippers as adaptive feet in legged robots,” Advanced Robotics, vol. 32, no. 15, pp. 825–836, 2018.
  27. C. Piazza, C. Della Santina, G. M. Gasparri, M. G. Catalano, G. Grioli, M. Garabini, and A. Bicchi, “Toward an adaptive foot for natural walking,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 1204–1210, IEEE, 2016.
  28. D. Mura, C. Della Santina, C. Piazza, I. Frizza, C. Morandi, M. Garabini, G. Grioli, and M. G. Catalano, “Exploiting adaptability in soft feet for sensing contact forces,” IEEE Robotics and Automation Letters, 2019.
  29. M. G. Catalano, I. Frizza, C. Morandi, G. Grioli, K. Ayusawa, T. Ito, and G. Venture, “Hrp-4 walks on soft feet,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 470–477, 2020.
  30. M. G. Catalano, M. J. Pollayil, G. Grioli, G. Valsecchi, H. Kolvenbach, M. Hutter, A. Bicchi, and M. Garabini, “Adaptive feet for quadrupedal walkers,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 302–316, 2021.
  31. J. Bednarek, N. Maalouf, M. J. Pollayil, M. Garabini, M. G. Catalano, G. Grioli, and D. Belter, “Cnn-based foothold selection for mechanically adaptive soft foot,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10225–10232, IEEE, 2020.
  32. M. B. Popovic, A. Goswami, and H. Herr, “Ground reference points in legged locomotion: Definitions, biological trajectories and control implications,” The International Journal of Robotics Research, vol. 24, no. 12, pp. 1013–1032, 2005.
  33. P. Sardain and G. Bessonnet, “Forces acting on a biped robot. center of pressure-zero moment point,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 34, no. 5, pp. 630–637, 2004.
  34. T. Sato, S. Sakaino, and K. Ohnishi, “Stability index for biped robot moving on rough terrain,” IEEJ Transactions on Industry Applications, vol. 129, no. 6, 2009.
  35. S. Caron, Q.-C. Pham, and Y. Nakamura, “Zmp support areas for multi-contact mobility under frictional constraints,” arXiv preprint arXiv:1510.03232, 2015.
  36. A. Bicchi, J. K. Salisbury, and D. L. Brock, “Contact sensing from force measurements,” The International Journal of Robotics Research, vol. 12, no. 3, pp. 249–262, 1993.
  37. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Biped walking pattern generation by using preview control of zero-moment point,” in Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on, vol. 2, pp. 1620–1626, IEEE, 2003.
  38. J. Hicks, “The mechanics of the foot: Ii. the plantar aponeurosis and the arch,” Journal of anatomy, vol. 88, no. Pt 1, p. 25, 1954.
  39. C. Della Santina, C. Piazza, G. Grioli, M. G. Catalano, and A. Bicchi, “Toward dexterous manipulation with augmented adaptive synergies: The pisa/iit softhand 2,” IEEE Transactions on Robotics, vol. 34, no. 5, pp. 1141–1156, 2018.
  40. C. Kelley, “Numerical methods for nonlinear equations,” Acta Numerica, vol. 27, pp. 207–287, 2018.
  41. M. G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza, and A. Bicchi, “Adaptive synergies for the design and control of the pisa/iit softhand,” The International Journal of Robotics Research, vol. 33, no. 5, pp. 768–782, 2014.
  42. B. Hillberry and A. Hall Jr, “Rolling contact joint,” Jan. 13 1976. US Patent 3,932,045.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com