Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the Committor with the Committor: an Anatomy of the Transition State Ensemble (2401.05279v2)

Published 10 Jan 2024 in physics.comp-ph and cond-mat.stat-mech

Abstract: Determining the kinetic bottlenecks that make transitions between metastable states difficult is key to understanding important physical problems like crystallization, chemical reactions, or protein folding. In all these phenomena, the system spends a considerable amount of time in one metastable state before making a rare but important transition to a new state. The rarity of these events makes their direct simulation challenging, if not impossible. We propose a method to explore the distribution of configurations that the system passes as it translocates from one metastable basin to another. We shall refer to this set of configurations as the transition state ensemble. We base our method on the committor function and the variational principle to which it obeys. We find the minimum of the variational principle via a self-consistent procedure that does not require any input besides the knowledge of the initial and final state. Right from the start, our procedure focuses on sampling the transition state ensemble and allows harnessing a large number of such configurations. With the help of the variational principle, we perform a detailed analysis of the transition state ensemble, ranking quantitatively the degrees of freedom mostly involved in the transition and opening the way for a systematic approach for the interpretation of simulation results and the construction of collective variables.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. T. G. Solomons and C. B. Fryhle, Organic chemistry (John Wiley & Sons, 2008).
  2. E. V. Anslyn and D. A. Dougherty, Modern physical organic chemistry (University science books, 2006).
  3. R. L. Baldwin and G. D. Rose, “Is protein folding hierarchic? ii. folding intermediates and transition states,” Trends in biochemical sciences 24, 77–83 (1999).
  4. C. Cecconi, E. A. Shank, C. Bustamante,  and S. Marqusee, “Direct observation of the three-state folding of a single protein molecule,” Science 309, 2057–2060 (2005), https://www.science.org/doi/pdf/10.1126/science.1116702 .
  5. S. E. Jackson, “How do small single-domain proteins fold?” Folding and Design 3, R81–R91 (1998).
  6. G. M. Torrie and J. P. Valleau, “Nonphysical sampling distributions in monte carlo free-energy estimation: Umbrella sampling,” Journal of Computational Physics 23, 187–199 (1977).
  7. A. Laio and M. Parrinello, “Escaping free-energy minima,” Proceedings of the national academy of sciences 99, 12562–12566 (2002).
  8. S. Izrailev, S. Stepaniants, B. Isralewitz, D. Kosztin, H. Lu, F. Molnar, W. Wriggers,  and K. Schulten, “Steered molecular dynamics,” in Computational Molecular Dynamics: Challenges, Methods, Ideas: Proceedings of the 2nd International Symposium on Algorithms for Macromolecular Modelling, Berlin, May 21–24, 1997 (Springer, 1999) pp. 39–65.
  9. E. Darve and A. Pohorille, “Calculating free energies using average force,” The Journal of chemical physics 115, 9169–9183 (2001).
  10. Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics method for protein folding,” Chemical physics letters 314, 141–151 (1999).
  11. J. Hénin, T. Lelièvre, M. R. Shirts, O. Valsson,  and L. Delemotte, “Enhanced sampling methods for molecular dynamics simulations,” Living Journal of Computational Molecular Science 4, 1583 (2022).
  12. A. Kolmogoroff, “Über die analytischen methoden in der wahrscheinlichkeitsrechnung,” Mathematische Annalen 104, 415–458 (1931).
  13. L. Onsager, “Initial recombination of ions,” Physical Review 54, 554 (1938).
  14. A. Berezhkovskii and A. Szabo, “One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions,” The Journal of chemical physics 122 (2005).
  15. A. M. Berezhkovskii and A. Szabo, “Diffusion along the splitting/commitment probability reaction coordinate,” The Journal of Physical Chemistry B 117, 13115–13119 (2013).
  16. R. Du, V. S. Pande, A. Y. Grosberg, T. Tanaka,  and E. S. Shakhnovich, “On the transition coordinate for protein folding,” The Journal of chemical physics 108, 334–350 (1998).
  17. E. Weinan, W. Ren,  and E. Vanden-Eijnden, “Transition pathways in complex systems: Reaction coordinates, isocommittor surfaces, and transition tubes,” Chemical Physics Letters 413, 242–247 (2005).
  18. E. Vanden-Eijnden, “Transition path theory,” in Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1 (Springer, 2006) pp. 453–493.
  19. E. Weinan and E. Vanden-Eijnden, “Transition-path theory and path-finding algorithms for the study of rare events,” Annual review of physical chemistry 61, 391–420 (2010).
  20. B. Roux, “Transition rate theory, spectral analysis, and reactive paths,” The Journal of Chemical Physics 156 (2022).
  21. H. Jung, R. Covino, A. Arjun, C. Leitold, C. Dellago, P. G. Bolhuis,  and G. Hummer, “Machine-guided path sampling to discover mechanisms of molecular self-organization,” Nature Computational Science , 1–12 (2023).
  22. G. M. Rotskoff and E. Vanden-Eijnden, “Learning with rare data: using active importance sampling to optimize objectives dominated by rare events,” arXiv preprint arXiv:2008.06334  (2020).
  23. H. Chen, B. Roux,  and C. Chipot, “Discovering reaction pathways, slow variables, and committor probabilities with machine learning,” Journal of Chemical Theory and Computation  (2023).
  24. Q. Li, B. Lin,  and W. Ren, “Computing committor functions for the study of rare events using deep learning,” The Journal of Chemical Physics 151 (2019).
  25. A. Ma and A. R. Dinner, “Automatic method for identifying reaction coordinates in complex systems,” The Journal of Physical Chemistry B 109, 6769–6779 (2005), pMID: 16851762, https://doi.org/10.1021/jp045546c .
  26. Y. Khoo, J. Lu,  and L. Ying, “Solving for high-dimensional committor functions using artificial neural networks,” Research in the Mathematical Sciences 6, 1–13 (2019).
  27. Y. Chen, J. Hoskins, Y. Khoo,  and M. Lindsey, “Committor functions via tensor networks,” Journal of Computational Physics 472, 111646 (2023).
  28. L. Bonati, V. Rizzi,  and M. Parrinello, “Data-driven collective variables for enhanced sampling,” The journal of physical chemistry letters 11, 2998–3004 (2020).
  29. E. Schubert and L. Lenssen, “Fast k-medoids clustering in rust and python,” Journal of Open Source Software 7, 4183 (2022).
  30. P. G. Bolhuis, C. Dellago,  and D. Chandler, “Reaction coordinates of biomolecular isomerization,” Proceedings of the National Academy of Sciences 97, 5877–5882 (2000).
  31. G. Henkelman and H. Jónsson, “A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives,” The Journal of chemical physics 111, 7010–7022 (1999).
  32. P. Novelli, L. Bonati, M. Pontil,  and M. Parrinello, “Characterizing metastable states with the help of machine learning,” Journal of Chemical Theory and Computation 18, 5195–5202 (2022), https://doi.org/10.1021/acs.jctc.2c00393 .
  33. H. Zulfikri, M. A. J. Koenis, M. M. Lerch, M. Di Donato, W. Szymański, C. Filippi, B. L. Feringa,  and W. J. Buma, “Taming the complexity of donor–acceptor stenhouse adducts: Infrared motion pictures of the complete switching pathway,” Journal of the American Chemical Society 141, 7376–7384 (2019), pMID: 30970210, https://doi.org/10.1021/jacs.9b00341 .
  34. F. Stricker, D. M. Sanchez, U. Raucci, N. D. Dolinski, M. S. Zayas, J. Meisner, C. J. Hawker, T. J. Martínez,  and J. Read de Alaniz, “A multi-stage single photochrome system for controlled photoswitching responses,” Nature Chemistry 14, 942–948 (2022).
  35. U. Raucci, D. M. Sanchez, T. J. Martínez,  and M. Parrinello, “Enhanced sampling aided design of molecular photoswitches,” Journal of the American Chemical Society 144, 19265–19271 (2022).
  36. D. M. Sanchez, U. Raucci,  and T. J. Martínez, “In silico discovery of multistep chemistry initiated by a conical intersection: the challenging case of donor–acceptor stenhouse adducts,” Journal of the American Chemical Society 143, 20015–20021 (2021).
  37. D. T. Cremer and J. Pople, “General definition of ring puckering coordinates,” Journal of the American Chemical Society 97, 1354–1358 (1975).
  38. K. Lindorff-Larsen, S. Piana, R. O. Dror,  and D. E. Shaw, “How fast-folding proteins fold,” Science 334, 517–520 (2011).
  39. D. Ray, E. Trizio,  and M. Parrinello, “Deep learning collective variables from transition path ensemble,” The Journal of Chemical Physics 158, 204102 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0148872/17697302/204102_1_5.0148872.pdf .
  40. L. Bonati, G. Piccini,  and M. Parrinello, “Deep learning the slow modes for rare events sampling,” Proceedings of the National Academy of Sciences 118, e2113533118 (2021).
  41. L. Bonati, D. Polino, C. Pizzolitto, P. Biasi, R. Eckert, S. Reitmeier, R. Schlögl,  and M. Parrinello, “The role of dynamics in heterogeneous catalysis: Surface diffusivity and n<sub>2</sub> decomposition on fe(111),” Proceedings of the National Academy of Sciences 120, e2313023120 (2023a), https://www.pnas.org/doi/pdf/10.1073/pnas.2313023120 .
  42. M. Yang, L. Bonati, D. Polino,  and M. Parrinello, “Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water,” Catalysis Today 387, 143–149 (2022).
  43. E. Trizio and M. Parrinello, “From enhanced sampling to reaction profiles,” The Journal of Physical Chemistry Letters 12, 8621–8626 (2021).
  44. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems 32 (2019), 10.48550/arXiv.1912.01703.
  45. L. Bonati, E. Trizio, A. Rizzi,  and M. Parrinello, “A unified framework for machine learning collective variables for enhanced sampling simulations: mlcolvar,” The Journal of Chemical Physics 159, 014801 (2023b), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0156343/18031428/014801_1_5.0156343.pdf .
  46. G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni,  and G. Bussi, “PLUMED 2: New feathers for an old bird,” Computer physics communications 185, 604–613 (2014).
  47. O. Valsson and M. Parrinello, “Variational approach to enhanced sampling and free energy calculations,” Physical Review Letters 113, 090601 (2014).
  48. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess,  and E. Lindahl, “Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1, 19–25 (2015).
  49. R. Salomon-Ferrer, D. A. Case,  and R. C. Walker, “An overview of the amber biomolecular simulation package,” WIREs Computational Molecular Science 3, 198–210 (2013), https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1121 .
  50. T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack,  and J. Hutter, “CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations,” The Journal of Chemical Physics 152, 194103 (2020), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0007045/16718133/194103_1_online.pdf .
  51. J. J. Stewart, “Optimization of parameters for semiempirical methods v: Modification of nddo approximations and application to 70 elements,” Journal of Molecular modeling 13, 1173–1213 (2007).
  52. S. Piana, K. Lindorff-Larsen,  and D. E. Shaw, “How robust are protein folding simulations with respect to force field parameterization?” Biophysical Journal 100, L47–L49 (2011).
  53. A. D. J. MacKerell, D. Bashford, M. Bellott, R. L. J. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin,  and M. Karplus, “All-atom empirical potential for molecular modeling and dynamics studies of proteins,” The Journal of Physical Chemistry B 102, 3586–3616 (1998), pMID: 24889800, https://doi.org/10.1021/jp973084f .
  54. Schrödinger, LLC, “The PyMOL molecular graphics system, version 2.5,”  (2015).
  55. J. Pizarroso, J. Portela,  and A. Muñoz, “Neuralsens: Sensitivity analysis of neural networks,” Journal of Statistical Software 102, 1–36 (2022).
  56. G. Bussi and M. Parrinello, “Accurate sampling using langevin dynamics,” Physical Review E 75, 056707 (2007).
  57. “Promoting transparency and reproducibility in enhanced molecular simulations,” Nature Methods 16, 670–673 (2019).
  58. G. Bussi, D. Donadio,  and M. Parrinello, “Canonical sampling through velocity rescaling,” The Journal of Chemical Physics 126, 014101 (2007), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.2408420/15393604/014101_1_online.pdf .
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com