Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing efficiently a parity-check matrix for Zps-additive codes (2401.05247v1)

Published 10 Jan 2024 in cs.IT and math.IT

Abstract: The Zps-additive codes of length n are subgroups of Zpsn , and can be seen as a generalization of linear codes over Z2, Z4, or more general over Z2s . In this paper, we show two methods for computing a parity-check matrix of a Zps-additive code from a generator matrix of the code in standard form. We also compare the performance of our results implemented in Magma with the current available function in Magma for codes over finite rings in general. A time complexity analysis is also shown.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. I. Aydogdu and I. Siap, “The structure of ℤ2⁢ℤ2ssubscriptℤ2subscriptℤsuperscript2𝑠\mathbb{Z}_{2}\mathbb{Z}_{2^{s}}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT blackboard_Z start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT end_POSTSUBSCRIPT-additive codes: bounds on the minimum distance,” Appl. Math. Inf. Sci. vol. 7(6), pp. 2271-2278, 2013.
  2. M. Bilal, J. Borges, S. T. Dougherty, and C. Fernández-Córdoba, “Maximum distance separable codes over ℤ4subscriptℤ4\mathbb{Z}_{4}blackboard_Z start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT and ℤ2×ℤ4subscriptℤ2subscriptℤ4\mathbb{Z}_{2}\times\mathbb{Z}_{4}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT × blackboard_Z start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT,” Designs, Codes and Cryptography, vol. 61, pp. 31-40, 2011.
  3. J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà, and M. Villanueva, “ℤ2⁢ℤ4subscriptℤ2subscriptℤ4\mathbb{Z}_{2}\mathbb{Z}_{4}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT blackboard_Z start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT-linear codes: generator matrices and duality,” Designs, Codes and Cryptography, vol. 54(2), pp. 167-179, 2010.
  4. J. Borges, C. Fernández, and J. Rifà, “Propelinear structure of ℤ2⁢ksubscriptℤ2𝑘\mathbb{Z}_{2k}blackboard_Z start_POSTSUBSCRIPT 2 italic_k end_POSTSUBSCRIPT-linear codes,” preprint, arXiv 0907.5287
  5. A. R. Calderbank and J. A. Sloane, “Modular and p𝑝pitalic_p-adic cyclic codes,” Designs, Codes and Cryptography, vol. 6, pp. 21-35, 1995.
  6. C. Carlet, “ℤ2ksubscriptℤsuperscript2𝑘\mathbb{Z}_{2^{k}}blackboard_Z start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_POSTSUBSCRIPT-linear codes,” IEEE Trans. Inform. Theory, vol. 44, pp. 1543-1547, 1998.
  7. S. T. Dougherty and C. Fernández-Córdoba, “Codes over ℤ2ksubscriptℤsuperscript2𝑘\mathbb{Z}_{2^{k}}blackboard_Z start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_POSTSUBSCRIPT, Gray map and self-dual codes,” Advances in Mathematics of Communications, vol. 5(4), pp. 571-588, 2011.
  8. C. Fernández, J. Rifà, and J. Borges, “Every ℤ2⁢ksubscriptℤ2𝑘\mathbb{Z}_{2k}blackboard_Z start_POSTSUBSCRIPT 2 italic_k end_POSTSUBSCRIPT-code is a binary propelinear code,” Electronic Notes in Discrete Mathematics, vol. 10, pp. 100-102, 2001.
  9. C. Fernández-Córdoba, A. Torres-Martín, and M. Villanueva, “Linear codes over the integer residue ring ℤpssubscriptℤsuperscript𝑝𝑠\mathbb{Z}_{p^{s}}blackboard_Z start_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT end_POSTSUBSCRIPT. A MAGMA package”, version 1.0, Universitat Autònoma de Barcelona, 2023. http://ccsg.uab.cat
  10. M. K. Gupta, M. C. Bhandari, and A. K. Lal. “On some linear codes over ℤ2ssubscriptℤsuperscript2𝑠\mathbb{Z}_{2^{s}}blackboard_Z start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT end_POSTSUBSCRIPT”. Designs, Codes and Cryptography, vol. 36(3), pp. 227– 244, 2005.
  11. A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, “The ℤ4subscriptℤ4\mathbb{Z}_{4}blackboard_Z start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT-linearity of Kerdock, Preparata, Goethals and related codes,” IEEE Trans. Inform. Theory, vol. 40, pp. 301-319, 1994.
  12. D. S. Krotov. “On ℤ2ksubscriptℤsuperscript2𝑘\mathbb{Z}_{2^{k}}blackboard_Z start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_POSTSUBSCRIPT-dual binary codes,” IEEE Transactions on Information Theory, vol. 53(4), pp. 1532–1537, 2007.
  13. M. Shi, Z. Sepasdar, A. Alahmadi, and P. Solé. “On two-weight ℤ2ksubscriptℤsuperscript2𝑘\mathbb{Z}_{2^{k}}blackboard_Z start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_POSTSUBSCRIPT - codes”, Designs, Codes and Cryptography, vol. 86(6), pp. 1201– 1209, 2018.
  14. H. Tapia-Recillas and G. Vega. “On ℤ2ksubscriptℤsuperscript2𝑘\mathbb{Z}_{2^{k}}blackboard_Z start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_POSTSUBSCRIPT-linear and quaternary codes,” SIAM Journal on Discrete Mathematics, vol. 17(1), pp. 103–113, 2003.
Citations (1)

Summary

We haven't generated a summary for this paper yet.