Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reliability Analysis of Complex Systems using Subset Simulations with Hamiltonian Neural Networks (2401.05244v1)

Published 10 Jan 2024 in stat.ML, cs.LG, stat.AP, and stat.CO

Abstract: We present a new Subset Simulation approach using Hamiltonian neural network-based Monte Carlo sampling for reliability analysis. The proposed strategy combines the superior sampling of the Hamiltonian Monte Carlo method with computationally efficient gradient evaluations using Hamiltonian neural networks. This combination is especially advantageous because the neural network architecture conserves the Hamiltonian, which defines the acceptance criteria of the Hamiltonian Monte Carlo sampler. Hence, this strategy achieves high acceptance rates at low computational cost. Our approach estimates small failure probabilities using Subset Simulations. However, in low-probability sample regions, the gradient evaluation is particularly challenging. The remarkable accuracy of the proposed strategy is demonstrated on different reliability problems, and its efficiency is compared to the traditional Hamiltonian Monte Carlo method. We note that this approach can reach its limitations for gradient estimations in low-probability regions of complex and high-dimensional distributions. Thus, we propose techniques to improve gradient prediction in these particular situations and enable accurate estimations of the probability of failure. The highlight of this study is the reliability analysis of a system whose parameter distributions must be inferred with Bayesian inference problems. In such a case, the Hamiltonian Monte Carlo method requires a full model evaluation for each gradient evaluation and, therefore, comes at a very high cost. However, using Hamiltonian neural networks in this framework replaces the expensive model evaluation, resulting in tremendous improvements in computational efficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. doi:10.1007/s11071-005-2803-2. URL https://doi.org/10.1007/s11071-005-2803-2
  2. doi:10.1007/s11831-011-9064-7. URL https://doi.org/10.1007/s11831-011-9064-7
  3. doi:10.1007/s00707-012-0726-9. URL https://doi.org/10.1007/s00707-012-0726-9
  4. doi:https://doi.org/10.1016/j.ress.2016.01.003. URL https://www.sciencedirect.com/science/article/pii/S0951832016000120
  5. arXiv:https://doi.org/10.1080/15397734.2017.1317269, doi:10.1080/15397734.2017.1317269. URL https://doi.org/10.1080/15397734.2017.1317269
  6. doi:https://doi.org/10.1016/j.strusafe.2022.102222. URL https://www.sciencedirect.com/science/article/pii/S0167473022000340
  7. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/eqe.2802, doi:https://doi.org/10.1002/eqe.2802. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.2802
  8. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.202100137, doi:https://doi.org/10.1002/pamm.202100137. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.202100137
  9. doi:https://doi.org/10.1016/j.strusafe.2016.05.001. URL https://www.sciencedirect.com/science/article/pii/S0167473016300054
  10. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.202000294, doi:https://doi.org/10.1002/pamm.202000294. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.202000294
  11. doi:https://doi.org/10.1016/j.ress.2019.106725. URL https://www.sciencedirect.com/science/article/pii/S0951832018315758
  12. doi:10.3389/fbuil.2021.679488. URL https://www.frontiersin.org/articles/10.3389/fbuil.2021.679488
  13. doi:https://doi.org/10.1016/j.jcp.2022.111506. URL https://www.sciencedirect.com/science/article/pii/S002199912200568X
  14. doi:10.1061/(ASCE)0733-9399(2003)129:8(901).
  15. doi:https://doi.org/10.1016/j.strusafe.2006.07.008. URL https://www.sciencedirect.com/science/article/pii/S0167473006000385
  16. doi:10.1063/1.1699114. URL https://doi.org/10.1063/1.1699114
  17. doi:10.1093/biomet/57.1.97. URL https://doi.org/10.1093/biomet/57.1.97
  18. doi:10.1007/s00180-018-00861-z. URL https://doi.org/10.1007/s00180-018-00861-z
  19. arXiv:1906.01563. URL http://arxiv.org/abs/1906.01563
  20. doi:https://doi.org/10.1016/j.jcp.2023.112425. URL https://www.sciencedirect.com/science/article/pii/S002199912300520X
  21. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.202200188, doi:https://doi.org/10.1002/pamm.202200188. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.202200188
  22. M. Betancourt, A conceptual introduction to hamiltonian monte carlo (2018). arXiv:1701.02434.
  23. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/eqe.3432, doi:https://doi.org/10.1002/eqe.3432. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.3432
  24. doi:10.3390/app12020581. URL https://www.mdpi.com/2076-3417/12/2/581
  25. doi:https://doi.org/10.1016/j.jocs.2020.101204. URL https://www.sciencedirect.com/science/article/pii/S1877750320305056
  26. doi:10.1061/(ASCE)0733-9399(1991)117:12(2904).
  27. arXiv:https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/44/4/191/5435905/191_1.pdf, doi:10.1115/1.3119501. URL https://doi.org/10.1115/1.3119501
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets