Insights into elastic properties of coarse-grained DNA models: q-stiffness of cgDNA vs. cgDNA+ (2401.05208v1)
Abstract: Coarse-grained models have emerged as valuable tools to simulate long DNA molecules while maintaining computational efficiency. These models aim at preserving interactions among coarse-grained variables in a manner that mirrors the underlying atomistic description. We explore here a method for testing coarse-grained vs. all-atom models using stiffness matrices in Fourier space ($q$-stiffnesses), which are particularly suited to probe DNA elasticity at different length scales. We focus on a class of coarse-grained rigid base DNA models known as cgDNA and its most recent version cgDNA+. Our analysis shows that while cgDNA+ follows closely the $q$-stiffnesses of the all-atom model, the original cgDNA shows some deviations for twist and bending variables which are rather strong in the $q \to 0$ (long length scale) limit. The consequence is that while both cgDNA and cgDNA+ give a suitable description of local elastic behavior, the former misses some effects which manifest themselves at longer length scales. In particular, cgDNA performs poorly on the twist stiffness with a value much lower than expected for long DNA molecules. Conversely, the all-atom and cgDNA+ twist is strongly length scale dependent: DNA is torsionally soft at a few base pair distances, but becomes more rigid at distances of a few dozens base pairs. Our analysis shows that the bending persistence length in all-atom and cgDNA+ is somewhat overestimated.
- M. Pasi et al., “μ𝜇\muitalic_μABC: A systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA,” Nucl. Acids Res. 42, 12272–12283 (2014).
- J. Curuksu, M. Zacharias, R. Lavery, and K. Zakrzewska, “Local and global effects of strong DNA bending induced during molecular dynamics simulations,” Nucl. Acids Res. 37, 3766–3773 (2009).
- J. Spiriti, H. Kamberaj, A. M. De Graff, M. Thorpe, and A. Van Der Vaart, “DNA bending through large angles is aided by ionic screening,” J. Chem. Theor. Comput. 8, 2145–2156 (2012).
- A. Karolak and A. van der Vaart, “Enhanced sampling simulations of DNA step parameters,” J. Comput. Chem. 35, 2297–2304 (2014).
- A. Peguero-Tejada and A. van der Vaart, “Biasing simulations of DNA base pair parameters with application to propellor twisting in AT/AT, AA/TT, and AC/GT steps and their uracil analogs,” J. Chem. Inf. Model. 57, 85–92 (2017).
- A. Voorspoels, J. Vreede, and E. Carlon, “Rigid base biasing in molecular dynamics enables enhanced sampling of DNA conformations,” J. Chem. Theor. Comput. 19, 902–909 (2023).
- T. E. Ouldridge, A. A. Louis, and J. P. Doye, “DNA nanotweezers studied with a coarse-grained model of DNA,” Phys. Rev. Lett. 104, 178101 (2010).
- O. Henrich, Y. A. G. Fosado, T. Curk, and T. E. Ouldridge, “Coarse-grained simulation of DNA using LAMMPS,” Eur. Phys. J. E 41, 57 (2018).
- P. D. Dans, A. Zeida, M. R. Machado, and S. Pantano, “A coarse grained model for atomic-detailed DNA simulations with explicit electrostatics,” J. Chem. Theor. Comput. 6, 1711–1725 (2010).
- Y. A. G. Fosado, D. Michieletto, J. Allan, C. Brackley, O. Henrich, and D. Marenduzzo, “A single nucleotide resolution model for large-scale simulations of double stranded DNA,” Soft Matter 12, 9458–9470 (2016).
- D. Chakraborty, N. Hori, and D. Thirumalai, “Sequence-dependent three interaction site model for single-and double-stranded DNA,” J. Chem. Theory Comput. 14, 3763–3779 (2018).
- S. Assenza and R. Pérez, ‘‘Accurate sequence-dependent coarse-grained model for conformational and elastic properties of double-stranded DNA,” J. Chem. Theor. Comput. 18, 3239–3256 (2022).
- R. Frederickx, T. In’t Veld, and E. Carlon, “Anomalous dynamics of DNA hairpin folding,” Phys. Rev. Lett. 112, 198102 (2014).
- C. Matek, T. E. Ouldridge, J. P. K. Doye, and A. A. Louis, “Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA,” Scientific Reports 5, 7655 (2015).
- A. Córdoba, D. M. Hinckley, J. Lequieu, and J. J. de Pablo, “A molecular view of the dynamics of dsDNA packing inside viral capsids in the presence of ions,” Biophys. J. 112, 1302–1315 (2017).
- L. Coronel, A. Suma, and C. Micheletti, “Dynamics of supercoiled DNA with complex knots: large-scale rearrangements and persistent multi-strand interlocking,” Nucl. Acids Res. 46, 7533 (2018).
- M. Caraglio, E. Skoruppa, and E. Carlon, “Overtwisting induces polygonal shapes in bent DNA,” J. Chem. Phys 150, 135101 (2019).
- D. Petkevičiūtė, M. Pasi, O. Gonzalez, and J. Maddocks, “cgDNA: a software package for the prediction of sequence-dependent coarse-grain free energies of B-form DNA,” Nucl. Acids Res. 42, e153–e153 (2014).
- R. Sharma, A. S. Patelli, L. De Bruin, and J. H. Maddocks, “cgNA+ web: A visual interface to the cgNA+ sequence-dependent statistical mechanics model of double-stranded nucleic acids,” J. Mol. Biol. , 167978 (2023).
- W. K. Olson et al., “A standard reference frame for the description of nucleic acid base-pair geometry,” J. Mol. Biol. 313, 229–237 (2001).
- A. S. Patelli, A sequence-dependent coarse-grain model of B-DNA with explicit description of bases and phosphate groups parametrised from large scale Molecular Dynamics simulations, Ph.D. thesis, EPFL, Lausanne (2019).
- O. Gonzalez, D. Petkeviciute, and J. H. Maddocks, “A sequence-dependent rigid-base model of DNA,” J. Chem. Phys. 138 (2013).
- E. Skoruppa, A. Voorspoels, J. Vreede, and E. Carlon, “Length-scale-dependent elasticity in DNA from coarse-grained and all-atom models,” Phys. Rev. E 103, 042408 (2021).
- M. Segers, A. Voorspoels, T. Sakaue, and E. Carlon, “Mechanical properties of nucleic acids and the non-local twistable wormlike chain model,” J. Chem. Phys. 156, 234105 (2022).
- H. Dohnalová and F. Lankaš, “Deciphering the mechanical properties of B-DNA duplex,” WIREs Comput Mol Sci. , e1575 (2021).
- B. Eslami-Mossallam, H. Schiessel, and J. van Noort, “Nucleosome dynamics: Sequence matters,” Adv. Colloid Interface Sci. 232, 101–113 (2016).
- Y. A. Gutiérrez Fosado, F. Landuzzi, and T. Sakaue, “Coarse graining DNA: Symmetry, nonlocal elasticity, and persistence length,” Phys. Rev. Lett. 130, 058402 (2023).
- M. Segers, E. Skoruppa, J. A. Stevens, M. Vangilbergen, A. Voorspoels, and E. Carlon, “Comment on "Flexibility of short DNA helices with finite-length effect: From base pairs to tens of base pairs",” J. Chem. Phys. 155, 027101 (2021).
- Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature 424, 338–341 (2003).
- J. Lipfert, J. W. Kerssemakers, T. Jager, and N. H. Dekker, “Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments,” Nat. Methods 7, 977–980 (2010).
- X. Gao, Y. Hong, F. Ye, J. T. Inman, and M. D. Wang, “Torsional Stiffness of Extended and Plectonemic DNA,” Phys. Rev. Lett. 127, 028101 (2021).
- J. S. Mitchell, J. Glowacki, A. E. Grandchamp, R. S. Manning, and J. H. Maddocks, “Sequence-dependent persistence lengths of DNA,” J. Chem. Theory Comput. 13, 1539–1555 (2017).
- S. Kim, E. Broströmer, D. Xing, J. Jin, S. Chong, H. Ge, S. Wang, C. Gu, L. Yang, Y. Q. Gao, et al., “Probing allostery through DNA,” Science 339, 816–819 (2013).
- G. Rosenblum, N. Elad, H. Rozenberg, F. Wiggers, and H. Hofmann, “Allostery through DNA drives phenotype switching,” Nature Comm. 12, 1–12 (2021).
- J. Lipfert, G. M. Skinner, J. M. Keegstra, T. Hensgens, T. Jager, D. Dulin, M. Köber, Z. Yu, S. P. Donkers, F.-C. Chou, R. Das, and N. H. Dekker, “Double-stranded RNA under force and torque: Similarities to and striking differences from double-stranded DNA,” Proc. Natl. Acad. Sci. USA 111, 15408–15413 (2014).
- K. Liebl and M. Zacharias, “The development of nucleic acids force fields: From an unchallenged past to a competitive future,” Biophys. J. 122, 2841 (2023).
- M. Abrahams, T. Murtola, R. Schulz, S. Páll, J. Smith, B. Hess, and E. Lindahl, “GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1-2, 19–25 (2015).
- I. Ivani et al., “Parmbsc1: a refined force field for DNA simulations,” Nat. Methods 13, 55–58 (2016).
- W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple potential functions for simulating liquid water,” J. Chem. Phys. 79, 926–935 (1983).
- G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity rescaling,” J. Chem. Phys. 126, 014101 (2007).
- M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A new molecular dynamics method,” J. Appl. Phys. 52, 7182–7190 (1981).
- R. Lavery, M. Moakher, J. Maddocks, D. Petkeviciute, and D. Zakrzewska, “Conformational analysis of nucleic acids revisited: Curves+,” Nucl. Acids Res. 37, 5917–5929 (2009).