Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Video-based Automatic Lameness Detection of Dairy Cows using Pose Estimation and Multiple Locomotion Traits (2401.05202v1)

Published 10 Jan 2024 in cs.CV

Abstract: This study presents an automated lameness detection system that uses deep-learning image processing techniques to extract multiple locomotion traits associated with lameness. Using the T-LEAP pose estimation model, the motion of nine keypoints was extracted from videos of walking cows. The videos were recorded outdoors, with varying illumination conditions, and T-LEAP extracted 99.6% of correct keypoints. The trajectories of the keypoints were then used to compute six locomotion traits: back posture measurement, head bobbing, tracking distance, stride length, stance duration, and swing duration. The three most important traits were back posture measurement, head bobbing, and tracking distance. For the ground truth, we showed that a thoughtful merging of the scores of the observers could improve intra-observer reliability and agreement. We showed that including multiple locomotion traits improves the classification accuracy from 76.6% with only one trait to 79.9% with the three most important traits and to 80.1% with all six locomotion traits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. doi:10.1016/j.compag.2008.05.016.
  2. doi:10.1016/j.compag.2010.07.004. URL http://dx.doi.org/10.1016/j.compag.2010.07.004
  3. doi:10.1016/j.compag.2023.107618. URL https://www.sciencedirect.com/science/article/pii/S0168169923000066
  4. doi:10.1016/j.biosystemseng.2023.05.003. URL https://www.sciencedirect.com/science/article/pii/S153751102300106X
  5. doi:10.3168/jds.2012-5597. URL http://linkinghub.elsevier.com/retrieve/pii/S0022030213002282
  6. doi:10.1016/j.biosystemseng.2019.11.017. URL https://doi.org/10.1016/j.biosystemseng.2019.11.017
  7. doi:10.3168/jds.2020-18288. URL https://www-journalofdairyscience-org.ezproxy.library.wur.nl/article/S0022-0302(20)30713-X/abstract
  8. doi:10.1016/j.compag.2022.106729. URL https://www.sciencedirect.com/science/article/pii/S0168169922000461
  9. doi:10.48550/arXiv.2206.04449. URL http://arxiv.org/abs/2206.04449
  10. doi:10.1038/s41593-018-0209-y. URL https://www.nature.com/articles/s41593-018-0209-y.
  11. doi:10.3168/jds.2012-5806. URL http://dx.doi.org/10.3168/jds.2012-5806
  12. doi:10.1016/j.biosystemseng.2014.01.009. URL http://dx.doi.org/10.1016/j.biosystemseng.2014.01.009
  13. doi:10.1016/j.compag.2013.11.005. URL http://dx.doi.org/10.1016/j.compag.2013.11.005
  14. doi:10.1016/j.biosystemseng.2017.08.011.
  15. doi:10.3168/jds.2014-8129. URL http://dx.doi.org/10.3168/jds.2014-8129
  16. doi:10.3168/jds.2014-9059. URL https://linkinghub.elsevier.com/retrieve/pii/S0022030215006633
  17. doi:10.3168/jds.S0022-0302(06)72077-X. URL https://www.sciencedirect.com/science/article/pii/S002203020672077X
  18. K. Krippendorff, Computing krippendorff’s alpha-reliability (2011).
  19. doi:10.1017/S0021859603002983. URL http://www.cambridge.org/core/journals/journal-of-agricultural-science/article/assessment-of-observer-performance-in-a-subjective-scoring-system-visual-classification-of-the-gait-of-cows/A4C2BDAAE4803FE2DFE34013FC8F6DE9#access-block
Citations (4)

Summary

We haven't generated a summary for this paper yet.