Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Bounds on the Least Common Multiple of a Polynomial Sequence and its Radical (2401.05184v3)

Published 10 Jan 2024 in math.NT

Abstract: Cilleruelo conjectured that for an irreducible polynomial $f \in \mathbb{Z}[X]$ of degree $d \geq 2$, denoting $$L_f(N)=\mathrm{lcm}(f(1),f(2),\ldots f(N))$$ one has $$\log L_f(n)\sim(d-1)N\log N.$$ He proved it in the case $d=2$ but it remains open for every polynomial with $d>2$. While the tight upper bound $\log L_f(n)\lesssim (d-1)N\log N$ is known, the best known general lower bound due to Sah is $\log L_f(n)\gtrsim N\log N.$ We give an improved lower bound for a special class of irreducible polynomials, which includes the decomposable irreducible polynomials $f=g\circ h,\,g,h\in\mathbb Z[x],\mathrm{deg}\, g,\mathrm{deg}\, h\ge 2$, for which we show $$\log L_f(n)\gtrsim \frac{d-1}{d-\mathrm{deg}\, g}N\log N.$$ We also improve Sah's lower bound $\log\ell_f(N)\gtrsim \frac 2dN\log N$ for the radical $\ell_f(N)=\mathrm{rad}(L_f(N))$ for all $f$ with $d\ge 3$ and give a further improvement for polynomials $f$ with a small Galois group and satisfying an additional technical condition, as well as for decomposable polynomials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. A limit involving least common multiples: 10797. Amer. Math. Monthly, 109(4):393–394, 2002.
  2. T. Browning. Power-free values of polynomials. Arch. Math., 96:139–150, 2011.
  3. J. Cilleruelo. The least common multiple of a quadratic sequence. Compos. Math., 147(4):1129–1150, 2011.
  4. A. Entin and S. Landsberg. The least common multiple of polynomial values over function fields. arXiv:2310.04164v2 [math.NT], 2023.
  5. C. Hooley. On the power-free values of polynomials. Mathematika, 14:21–26, 1967.
  6. K. Johnsen. Lineare Abhängigkeiten von Einheitswurzeln. Elem. Math., 40(3):57–59, 1985.
  7. Etai Leumi. The LCM problem for function fields. M.Sc. thesis at Tel Aviv University, 2021.
  8. J. Maynard and Z. Rudnick. A lower bound on the least common multiple of polynomial sequences. Riv. Mat. Univ. Parma., 12, 2021.
  9. Z. Rudnick and S. Zehavi. On Cilleruelo’s conjecture for the least common multiple of polynomial sequences. Rev. Mat. Iberoam., 37(4):1441–1458, 2020.
  10. A. Sah. An improved bound on the least common multiple of polynomial sequences,. J. Théor. Nombres Bordeaux, 32(3):891–899, 2020.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com