Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IRS Configuration Techniques for Ultra Wideband Signals and THz Communications (2401.05164v1)

Published 10 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: Motivated by the challenges of future 6G communications where terahertz (THz) frequencies, intelligent reflective surfaces (IRSs) and ultra-wideband (UWB) signals coexist, we analyse and propose a set of efficient techniques for configuring the IRS when the signal bandwidth is a significant fraction of the central frequency (up to 50%). To the best of our knowledge this is the first time that IRS configuration techniques are analyzed for such huge bandwidths. In our work we take into account for the channel model, the power spectral density of the signal reflected by the IRS and the network geometry. We evaluate the proposed solutions in terms of achievable rate and compare it against an upper bound we derived. Our results hint rules for designing IRS-aided communication systems and allow to draw conclusions on the trade-off between performance and complexity required for configuring the IRS.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. A. Nordio, L. Dossi, A. Tarable, and G. Virone, “Near-field IRS configuration techniques for wideband signals and THz communications,” in 2023 IEEE International Conference on Communications Workshops (ICC Workshops), 2023. doi: 10.1109/ICCWorkshops57953.2023.10283765 pp. 1198–1203.
  2. K. M. S. Huq, S. A. Busari, J. Rodriguez, V. Frascolla, W. Bazzi, and D. C. Sicker, “Terahertz-enabled wireless system for beyond-5G ultra-fast networks: A brief survey,” IEEE Network, vol. 33, no. 4, pp. 89–95, 2019.
  3. I. Ahmed, K. Shahid, and H. Khammari, “DRL based beam selection and hybrid beamforming for intelligent reflective surface assisted massive MIMO system,” in 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), 2023, pp. 1–6.
  4. M. Di Renzo et al., “Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come,” EURASIP Journal Wireless Communication Networks, vol. 129, May 2019.
  5. T. Gong, P. Gavriilidis, R. Ji, C. Huang, G. C. Alexandropoulos, L. Wei, Z. Zhang, M. Debbah, H. V. Poor, and C. Yuen, “Holographic MIMO communications: Theoretical foundations, enabling technologies, and future directions,” IEEE Communications Surveys & Tutorials, pp. 1–1, 2023.
  6. B. Wang, F. Gao, S. Jin, H. Lin, G. Y. Li, S. Sun, and T. S. Rappaport, “Spatial-wideband effect in massive MIMO with application in mmwave systems,” IEEE Communications Magazine, vol. 56, no. 12, pp. 134–141, 2018.
  7. L. Dai, J. Tan, Z. Chen, and H. V. Poor, “Delay-phase precoding for wideband THz massive MIMO,” IEEE Transactions on Wireless Communications, vol. 21, no. 9, pp. 7271–7286, 2022.
  8. F. Gao, B. Wang, C. Xing, J. An, and G. Y. Li, “Wideband beamforming for hybrid massive MIMO terahertz communications,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1725–1740, 2021.
  9. R. Wang, Y. Yang, B. Makki, and A. Shamim, “A wideband reconfigurable intelligent surface for 5G millimeter-wave applications,” 2023. doi: 10.48550/arXiv.2304.11572
  10. S. Gong, X. Lu, D. T. Hoang, D. Niyato, L. Shu, D. I. Kim, and Y.-C. Liang, “Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2283–2314, Apr. 2020.
  11. W. Cai, R. Liu, Y. Liu, M. Li, and Q. Liu, “Practical modeling and beamforming for intelligent reflecting surface aided wideband systems,” IEEE Communications Letters, vol. 24, no. 7, pp. 1568–1571, 2020.
  12. S. Zeng, H. Zhang, B. Di, Y. Liu, M. D. Renzo, Z. Han, H. V. Poor, and L. Song, “Intelligent omni-surfaces: Reflection-refraction circuit model, full-dimensional beamforming, and system implementation,” IEEE Transactions on Comm., vol. 70, no. 11, pp. 7711–7727, 2022.
  13. Y. Chen, D. Chen, and T. Jiang, “Beam-squint mitigating in reconfigurable intelligent surface aided wideband mmwave communications,” in 2021 IEEE Wireless Communications and Networking Conference (WCNC), 2021, pp. 1–6.
  14. D. Konstantinos, s. D. A. Styliano, Q. N. Hien, B. Boris, and M. Michail, “Intelligent reflecting surface-aided wideband THz communications: Modeling and analysis,” IEEE WCNC, 2021. [Online]. Available: https://https://arxiv.org/abs/2110.15768
  15. M. Cui, L. Dai, Z. Wang, S. Zhou, and N. Ge, “Near-field rainbow: Wideband beam training for XL-MIMO,” IEEE Transactions on Wireless Communications, pp. 1–1, 2022.
  16. W. Hao, F. Zhou, M. Zeng, O. A. Dobre, and N. Al-Dhahir, “Ultra wideband THz IRS communications: Applications, challenges, key techniques, and research opportunities,” IEEE Network, vol. 36, no. 6, pp. 214–220, 2022.
  17. S. Ma, W. Shen, J. An, and L. Hanzo, “Wideband channel estimation for IRS-aided systems in the face of beam squint,” IEEE Transactions on Wireless Communications, vol. 20, no. 10, pp. 6240–6253, 2021.
  18. H. Hashemi, T.-s. Chu, and J. Roderick, “Integrated true-time-delay-based ultra-wideband array processing,” IEEE Communications Magazine, vol. 46, no. 9, pp. 162–172, 2008.
  19. J. An, C. Xu, D. W. K. Ng, C. Yuen, L. Gan, and L. Hanzo, “Reconfigurable intelligent surface-enhanced OFDM communications via delay adjustable metasurface,” CoRR, vol. abs/2110.09291, 2021. [Online]. Available: https://arxiv.org/abs/2110.09291
  20. R. Fara, P. Ratajczak, D.-T. Phan-Huy, A. Ourir, M. Di Renzo, and J. de Rosny, “A prototype of reconfigurable intelligent surface with continuous control of the reflection phase,” IEEE Wireless Communications, vol. 29, no. 1, pp. 70–77, 2022.
  21. A. Tarable, F. Malandrino, L. Dossi, R. Nebuloni, G. Virone, and A. Nordio, “Optimization of IRS-aided sub-THz communications under practical design constraints,” IEEE Transactions on Wireless Communications, vol. 21, no. 12, pp. 10 824–10 838, 2022.
  22. J. Kokkoniemi, J. Lehtomäki, and M. Juntti, “Simple molecular absorption loss model for 200–450 gigahertz frequency band,” in 2019 European Conference on Networks and Communications (EuCNC), 2019. doi: 10.1109/EuCNC.2019.8801950 pp. 219–223.
  23. C. Han and Y. Chen, “Propagation modeling for wireless communications in the terahertz band,” IEEE Communications Magazine, vol. 56, no. 6, pp. 96–101, 2018.
  24. C. Pan, H. Ren, K. Wang, M. Elkashlan, A. Nallanathan, J. Wang, and L. Hanzo, “Intelligent reflecting surface aided mimo broadcasting for simultaneous wireless information and power transfer,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1719–1734, 2020.
  25. M. Soltanalian and P. Stoica, “Designing unimodular codes via quadratic optimization,” IEEE Transactions on Signal Processing, vol. 62, no. 5, pp. 1221–1234, 2014.
  26. O. Aldayel, V. Monga, and M. Rangaswamy, “Tractable transmit MIMO beampattern design under a constant modulus constraint,” IEEE Transactions on Signal Processing, vol. 65, no. 10, pp. 2588–2599, 2017.
  27. O. Özdogan, E. Björnson, and E. G. Larsson, “Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling,” IEEE Wireless Communications Letters, vol. 9, no. 5, pp. 581–585, May 2020.
  28. 3GPP, “5G; Study on channel model for frequencies from 0.5 to 100 GHz - Release 14,” 3rd Generation Partnership Project (3GPP), Tech. Rep. 38.901, 2017.
  29. ITU-R, “Attenuation by atmospheric gases and related effects,” International Telecommunication Union, Recommendation p.676-13, 2022.
  30. ITU-T, “Effects of building materials and structures on radiowave propagation above about 100 MHz,” International Telecommunication Union, Recommendation P.2060-1, 2015.
  31. A. Shafie, N. Yang, C. Han, J. M. Jornet, M. Juntti, and T. Kurner, “Terahertz communications for 6G and beyond wireless networks: Challenges, key advancements, and opportunities,” IEEE Network, pp. 1–8, 2022.
  32. Z.-q. Luo, W.-k. Ma, A. M.-c. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 20–34, 2010.
  33. Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design,” in 2018 IEEE Global Communications Conference (GLOBECOM), 2018. doi: 10.1109/GLOCOM.2018.8647620 pp. 1–6.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com