Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal hard-edge statistics of non-Hermitian random matrices (2401.05044v2)

Published 10 Jan 2024 in cond-mat.mes-hall, cond-mat.dis-nn, cond-mat.stat-mech, and quant-ph

Abstract: Random matrix theory is a powerful tool for understanding spectral correlations inherent in quantum chaotic systems. Despite diverse applications of non-Hermitian random matrix theory, the role of symmetry remains to be fully established. Here, we comprehensively investigate the impact of symmetry on the level statistics around the spectral origin -- hard-edge statistics -- and expand the classification of spectral statistics to encompass all the 38 symmetry classes of non-Hermitian random matrices. Within this classification, we discern 28 symmetry classes characterized by distinct hard-edge statistics from the level statistics in the bulk of spectra, which are further categorized into two groups, namely the Altland-Zirnbauer$_0$ classification and beyond. We introduce and elucidate quantitative measures capturing the universal hard-edge statistics for all the symmetry classes. Furthermore, through extensive numerical calculations, we study various open quantum systems in different symmetry classes, including quadratic and many-body Lindbladians, as well as non-Hermitian Hamiltonians. We show that these systems manifest the same hard-edge statistics as random matrices and that their ensemble-average spectral distributions around the origin exhibit emergent symmetry conforming to the random-matrix behavior. Our results establish a comprehensive understanding of non-Hermitian random matrix theory and are useful in detecting quantum chaos or its absence in open quantum systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.