Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Cyclic Schedulers for Age of Information Optimization in Large-Scale Status Update Systems (2401.04904v1)

Published 10 Jan 2024 in cs.IT, cs.NI, cs.PF, and math.IT

Abstract: We study cyclic scheduling for generate-at-will (GAW) multi-source status update systems with heterogeneous service times and packet drop probabilities, with the aim of minimizing the weighted sum age of information (AoI), called system AoI, or the weighted sum peak AoI (PAoI), called system PAoI. In particular, we obtain well-performing cyclic schedulers which can easily scale to thousands of information sources and which also have low online implementation complexity. The proposed schedulers are comparatively studied against existing scheduling algorithms in terms of computational load and system AoI/PAoI performance, to validate their effectiveness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–1210, May 2021.
  2. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in IEEE Infocom, March 2012.
  3. M. Costa, M. Codreanu, and A. Ephremides, “Age of information with packet management,” in IEEE ISIT, June 2014.
  4. I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Scheduling policies for minimizing age of information in broadcast wireless networks,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp. 2637–2650, 2018.
  5. N. Akar and E. O. Gamgam, “Distribution of age of information in status update systems with heterogeneous information sources: An absorbing Markov chain-based approach,” IEEE Communications Letters, vol. 27, no. 8, pp. 2024–2028, 2023.
  6. C. Li, S. Li, Q. Liu, Y. T. Hou, W. Lou, and S. Kompella, “Eywa: A general approach for scheduler design in AoI optimization,” in IEEE Infocom, May 2023.
  7. A. Maatouk, S. Kriouile, M. Assad, and A. Ephremides, “On the optimality of the Whittle’s index policy for minimizing the age of information,” IEEE Transactions on Wireless Communications, vol. 20, no. 2, pp. 1263–1277, 2021.
  8. S. Kriouile, M. Assaad, and A. Maatouk, “On the global optimality of Whittle’s index policy for minimizing the age of information,” IEEE Transactions on Information Theory, vol. 68, no. 1, pp. 572–600, 2022.
  9. N. Akar and E. Karasan, “Is proportional fair scheduling suitable for age-sensitive traffic?” Computer Networks, vol. 226, p. 109668, 2023.
  10. E. O. Gamgam, N. Akar, and S. Ulukus, “Minimizing weighted sum age of information with open-loop cyclic scheduling,” Dec. 2023, arXiv:2311.18791.
  11. R. D. Yates, P. Ciblat, A. Yener, and M. Wigger, “Age-optimal constrained cache updating,” in IEEE ISIT, June 2017.
  12. M. Bastopcu and S. Ulukus, “Who should Google Scholar update more often?” in IEEE Infocom, July 2020.
  13. M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” in ACM SIGCOMM, September 1995, p. 231–242.
Citations (4)

Summary

We haven't generated a summary for this paper yet.