Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Low-Altitude Navigation in Steep Terrain with Fixed-Wing Aerial Vehicles (2401.04831v2)

Published 9 Jan 2024 in cs.RO

Abstract: Fixed-wing aerial vehicles provide an efficient way to navigate long distances or cover large areas for environmental monitoring applications. By design, they also require large open spaces due to limited maneuverability. However, strict regulatory and safety altitude limits constrain the available space. Especially in complex, confined, or steep terrain, ensuring the vehicle does not enter an inevitable collision state(ICS) can be challenging. In this work, we propose a strategy to find safe paths that do not enter an ICS while navigating within tight altitude constraints. The method uses periodic paths to efficiently classify ICSs. A sampling-based planner creates collision-free and kinematically feasible paths that begin and end in safe periodic (circular) paths. We show that, in realistic terrain, using circular periodic paths can simplify the goal selection process by making it yaw agnostic and constraining yaw. We demonstrate our approach by dynamically planning safe paths in real-time while navigating steep terrain on a flight test in complex alpine terrain.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. P. Oettershagen, T. Stastny, T. Hinzmann, K. Rudin, T. Mantel, A. Melzer, B. Wawrzacz, G. Hitz, and R. Siegwart, “Robotic technologies for solar-powered uavs: Fully autonomous updraft-aware aerial sensing for multiday search-and-rescue missions,” Journal of Field Robotics, vol. 35, no. 4, pp. 612–640, 2018.
  2. A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, and R. Siegwart, “Three-dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots,” Autonomous Robots, vol. 40, pp. 1059–1078, 2016.
  3. G. Jouvet, Y. Weidmann, E. Van Dongen, M. P. Lüthi, A. Vieli, and J. C. Ryan, “High-endurance uav for monitoring calving glaciers: Application to the inglefield bredning and eqip sermia, greenland,” Frontiers in Earth Science, vol. 7, p. 206, 2019.
  4. P.-H. Lin and C.-S. Lee, “The eyewall-penetration reconnaissance observation of typhoon longwang (2005) with unmanned aerial vehicle, aerosonde,” Journal of Atmospheric and Oceanic Technology, vol. 25, no. 1, pp. 15–25, 2008.
  5. K. Shah, G. Ballard, A. Schmidt, and M. Schwager, “Multidrone aerial surveys of penguin colonies in antarctica,” Science Robotics, vol. 5, no. 47, p. eabc3000, 2020.
  6. Y. Bühler, M. S. Adams, A. Stoffel, and R. Boesch, “Photogrammetric reconstruction of homogenous snow surfaces in alpine terrain applying near-infrared uas imagery,” International Journal of Remote Sensing, vol. 38, no. 8-10, pp. 3135–3158, 2017.
  7. E. Union, “Commission implementing regulation (eu) 2019/947 of 24 may 2019 on the rules and procedures for the operation of unmanned aircraft,” Official Journal of the European Union, vol. 62, pp. 45–71, 2019.
  8. A. Bry, C. Richter, A. Bachrach, and N. Roy, “Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor environments,” The International Journal of Robotics Research, vol. 34, no. 7, pp. 969–1002, 2015.
  9. F. Achermann, “Real-time optimal path planning for fixed wing aircraft in non-uniform wind.”
  10. P. Oettershagen, F. Achermann, B. Müller, D. Schneider, and R. Siegwart, “Towards fully environment-aware uavs: Real-time path planning with online 3d wind field prediction in complex terrain,” arXiv preprint arXiv:1712.03608, 2017.
  11. D. Lee, H. Song, and D. H. Shim, “Optimal path planning based on spline-RRT* for fixed-wing UAVs operating in three-dimensional environments,” in 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014), Oct. 2014, pp. 835–839, iSSN: 2093-7121.
  12. J. Levin, A. Paranjape, and M. Nahon, “Motion planning for a small aerobatic fixed-wing unmanned aerial vehicle,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 8464–8470.
  13. M. Seemann and K. Janschek, “RRT-based Trajectory Planning for Fixed Wing UAVs using Bezier Curves,” in ISR/Robotik 2014; 41st International Symposium on Robotics, Jun. 2014, pp. 1–8.
  14. T. Stastny and R. Siegwart, “On flying backwards: Preventing run-away of small, low-speed, fixed-wing UAVs in strong winds,” pp. 5198–5205, ISBN: 9781728140049 _eprint: 1908.01381.
  15. H. Chitsaz and S. M. LaValle, “Time-optimal paths for a Dubins airplane,” in 46th IEEE Conference on Decision and Control, 2007, pp. 2379–2384.
  16. T. Fraichard and H. Asama, “Inevitable collision states — a step towards safer robots?” p. 25, 2004.
  17. S. Petti and T. Fraichard, “Partial motion planning framework for reactive planning within dynamic environments,” in Proc. of the IFAC/AAAI Int. Conf. on Informatics in Control, Automation and Robotics, 2005.
  18. K. E. Bekris, “Avoiding inevitable collision states: Safety and computational efficiency in replanning with sampling-based algorithms,” in Workshop on Guaranteeing Safe Navigation in Dynamic Environments. In: International Conference on Robotics and Automation (ICRA-10), 2010.
  19. S. Arora, S. Choudhury, D. Althoff, and S. Scherer, “Emergency maneuver library-ensuring safe navigation in partially known environments,” in 2015 IEEE international conference on robotics and automation (ICRA).   IEEE, 2015, pp. 6431–6438.
  20. D. Althoff, M. Althoff, and S. Scherer, “Online safety verification of trajectories for unmanned flight with offline computed robust invariant sets,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2015, pp. 3470–3477.
  21. R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for outdoor terrain mapping and loop closing,” in 2006 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2006, pp. 2276–2282.
  22. P. Fankhauser and M. Hutter, “A universal grid map library: Implementation and use case for rough terrain navigation,” Studies in Computational Intelligence, vol. 625, pp. 99–120, 2016, iSBN: 9783319260549.
  23. L. Polidori and M. El Hage, “Digital elevation model quality assessment methods: A critical review,” Remote sensing, vol. 12, no. 21, p. 3522, 2020.
  24. S. Karaman and E. Frazzoli, “Incremental Sampling-based Algorithms for Optimal Motion Planning,” arXiv:1005.0416 [cs], May 2010, arXiv: 1005.0416. [Online]. Available: http://arxiv.org/abs/1005.0416
  25. T. McLain, R. W. Beard, and M. Owen, “Implementing dubins airplane paths on fixed-wing uavs,” 2014.
  26. D. Schneider, “Path planning for fixed-wing unmanned aerial vehicles,” Master’s thesis, ETH Zürich, 2016.
  27. A. M. Shkel and V. Lumelsky, “Classification of the Dubins set,” Robotics and Autonomous Systems, p. 24, 2001.
  28. Swisstopo, “Swissalti3d,” 2023.
  29. I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–82, December 2012, https://ompl.kavrakilab.org.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com