Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Masked AutoEncoder for Graph Clustering without Pre-defined Cluster Number k (2401.04741v1)

Published 9 Jan 2024 in cs.LG

Abstract: Graph clustering algorithms with autoencoder structures have recently gained popularity due to their efficient performance and low training cost. However, for existing graph autoencoder clustering algorithms based on GCN or GAT, not only do they lack good generalization ability, but also the number of clusters clustered by such autoencoder models is difficult to determine automatically. To solve this problem, we propose a new framework called Graph Clustering with Masked Autoencoders (GCMA). It employs our designed fusion autoencoder based on the graph masking method for the fusion coding of graph. It introduces our improved density-based clustering algorithm as a second decoder while decoding with multi-target reconstruction. By decoding the mask embedding, our model can capture more generalized and comprehensive knowledge. The number of clusters and clustering results can be output end-to-end while improving the generalization ability. As a nonparametric class method, extensive experiments demonstrate the superiority of \textit{GCMA} over state-of-the-art baselines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. Structural deep clustering network. In WWW, pp.  1400–1410. ACM / IW3C2, 2020.
  2. Deep neural networks for learning graph representations. In AAAI, pp.  1145–1152. AAAI Press, 2016.
  3. Jason Chang and John W. Fisher III. Parallel sampling of DP mixture models using sub-cluster splits. In NIPS, pp.  620–628, 2013.
  4. BERT: pre-training of deep bidirectional transformers for language understanding. In NAACL-HLT (1), pp.  4171–4186. Association for Computational Linguistics, 2019.
  5. Semi-implicit graph variational auto-encoders. In NeurIPS, pp.  10711–10722, 2019.
  6. Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning on graphs. In ICML, volume 119 of Proceedings of Machine Learning Research, pp.  4116–4126. PMLR, 2020.
  7. Masked autoencoders are scalable vision learners. In CVPR, pp.  15979–15988. IEEE, 2022.
  8. Graphmae: Self-supervised masked graph autoencoders. In KDD, pp.  594–604. ACM, 2022.
  9. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS, 2020.
  10. Variational graph auto-encoders. CoRR, abs/1611.07308, 2016.
  11. Semi-supervised classification with graph convolutional networks. In ICLR (Poster). OpenReview.net, 2017.
  12. What’s behind the mask: Understanding masked graph modeling for graph autoencoders. In KDD, pp.  1268–1279. ACM, 2023.
  13. Drug similarity integration through attentive multi-view graph auto-encoders. In IJCAI, pp.  3477–3483. ijcai.org, 2018.
  14. Adversarially regularized graph autoencoder for graph embedding. In IJCAI, pp.  2609–2615. ijcai.org, 2018.
  15. Bruno Almeida Pimentel and André C.P.L.F. de Carvalho. A meta-learning approach for recommending the number of clusters for clustering algorithms. Knowledge-Based Systems, 195:105682, 2020. ISSN 0950-7051.
  16. A Rodriguez and A. Laio. ”clustering by fast search and find of density peaks. Science, 344(6191):1492, 2014.
  17. Deepdpm: Deep clustering with an unknown number of clusters. In CVPR, pp.  9851–9860. IEEE, 2022.
  18. Collective classification in network data. AI Mag., 29(3):93–106, 2008.
  19. Deep continuous clustering. CoRR, abs/1803.01449, 2018.
  20. Effective decoding in graph auto-encoder using triadic closure. In AAAI, pp.  906–913. AAAI Press, 2020.
  21. Gigamae: Generalizable graph masked autoencoder via collaborative latent space reconstruction. CoRR, abs/2308.09663, 2023.
  22. S2GAE: self-supervised graph autoencoders are generalizable learners with graph masking. In WSDM, pp.  787–795. ACM, 2023.
  23. Deep fusion clustering network. In AAAI, pp.  9978–9987. AAAI Press, 2021.
  24. Laurens van der Maaten and Ge offrey Hinton. Visualizing data using t-sne. In JMLR, pp.  2579–2605, 2008.
  25. Graph attention networks. CoRR, abs/1710.10903, 2017.
  26. Deep graph infomax. In ICLR (Poster). OpenReview.net, 2019.
  27. Computer-aided engineering (cae) for system analysis. Proceedings of the IEEE, 72(12):1732–1745, 1984.
  28. MGAE: marginalized graph autoencoder for graph clustering. In CIKM, pp.  889–898. ACM, 2017.
  29. Attributed graph clustering: A deep attentional embedding approach. In IJCAI, pp.  3670–3676. ijcai.org, 2019a.
  30. Heterogeneous graph attention network. In WWW, pp.  2022–2032. ACM, 2019b.
  31. Deep embedding for determining the number of clusters. In AAAI, pp.  8173–8174. AAAI Press, 2018.
  32. DNB: A joint learning framework for deep bayesian nonparametric clustering. IEEE Trans. Neural Networks Learn. Syst., 33(12):7610–7620, 2022.
  33. Unsupervised deep embedding for clustering analysis. In ICML, volume 48 of JMLR Workshop and Conference Proceedings, pp.  478–487. JMLR.org, 2016.
  34. Network representation learning with rich text information. In IJCAI, pp.  2111–2117. AAAI Press, 2015.
  35. Hongyuan Zhang Rui Zhang and Xuelong Li. Embedding graph auto-encoder for graph clustering. In IEEE Transactions on Neural Networks and Learning Systems, volume 45, pp.  3986–3993, 2023.
  36. Attributed graph clustering via adaptive graph convolution. In IJCAI, pp.  4327–4333. ijcai.org, 2019.
  37. Adaptive nonparametric variational autoencoder. CoRR, abs/1906.03288, 2019.
  38. Deep graph contrastive representation learning. CoRR, abs/2006.04131, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuanchi Ma (2 papers)
  2. Hui He (38 papers)
  3. Zhongxiang Lei (1 paper)
  4. Zhendong Niu (10 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets